Metamath Proof Explorer


Theorem hdmap1l6k

Description: Lemmma for hdmap1l6 . Eliminate nonzero vector requirement. (Contributed by NM, 1-May-2015)

Ref Expression
Hypotheses hdmap1l6.h H=LHypK
hdmap1l6.u U=DVecHKW
hdmap1l6.v V=BaseU
hdmap1l6.p +˙=+U
hdmap1l6.s -˙=-U
hdmap1l6c.o 0˙=0U
hdmap1l6.n N=LSpanU
hdmap1l6.c C=LCDualKW
hdmap1l6.d D=BaseC
hdmap1l6.a ˙=+C
hdmap1l6.r R=-C
hdmap1l6.q Q=0C
hdmap1l6.l L=LSpanC
hdmap1l6.m M=mapdKW
hdmap1l6.i I=HDMap1KW
hdmap1l6.k φKHLWH
hdmap1l6.f φFD
hdmap1l6cl.x φXV0˙
hdmap1l6.mn φMNX=LF
hdmap1l6k.y φYV
hdmap1l6k.z φZV
hdmap1l6k.xn φ¬XNYZ
Assertion hdmap1l6k φIXFY+˙Z=IXFY˙IXFZ

Proof

Step Hyp Ref Expression
1 hdmap1l6.h H=LHypK
2 hdmap1l6.u U=DVecHKW
3 hdmap1l6.v V=BaseU
4 hdmap1l6.p +˙=+U
5 hdmap1l6.s -˙=-U
6 hdmap1l6c.o 0˙=0U
7 hdmap1l6.n N=LSpanU
8 hdmap1l6.c C=LCDualKW
9 hdmap1l6.d D=BaseC
10 hdmap1l6.a ˙=+C
11 hdmap1l6.r R=-C
12 hdmap1l6.q Q=0C
13 hdmap1l6.l L=LSpanC
14 hdmap1l6.m M=mapdKW
15 hdmap1l6.i I=HDMap1KW
16 hdmap1l6.k φKHLWH
17 hdmap1l6.f φFD
18 hdmap1l6cl.x φXV0˙
19 hdmap1l6.mn φMNX=LF
20 hdmap1l6k.y φYV
21 hdmap1l6k.z φZV
22 hdmap1l6k.xn φ¬XNYZ
23 16 adantr φY=0˙KHLWH
24 17 adantr φY=0˙FD
25 18 adantr φY=0˙XV0˙
26 19 adantr φY=0˙MNX=LF
27 simpr φY=0˙Y=0˙
28 21 adantr φY=0˙ZV
29 22 adantr φY=0˙¬XNYZ
30 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 23 24 25 26 27 28 29 hdmap1l6b φY=0˙IXFY+˙Z=IXFY˙IXFZ
31 16 adantr φZ=0˙KHLWH
32 17 adantr φZ=0˙FD
33 18 adantr φZ=0˙XV0˙
34 19 adantr φZ=0˙MNX=LF
35 20 adantr φZ=0˙YV
36 simpr φZ=0˙Z=0˙
37 22 adantr φZ=0˙¬XNYZ
38 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 31 32 33 34 35 36 37 hdmap1l6c φZ=0˙IXFY+˙Z=IXFY˙IXFZ
39 16 adantr φY0˙Z0˙KHLWH
40 17 adantr φY0˙Z0˙FD
41 18 adantr φY0˙Z0˙XV0˙
42 19 adantr φY0˙Z0˙MNX=LF
43 22 adantr φY0˙Z0˙¬XNYZ
44 20 adantr φY0˙Z0˙YV
45 simprl φY0˙Z0˙Y0˙
46 eldifsn YV0˙YVY0˙
47 44 45 46 sylanbrc φY0˙Z0˙YV0˙
48 21 adantr φY0˙Z0˙ZV
49 simprr φY0˙Z0˙Z0˙
50 eldifsn ZV0˙ZVZ0˙
51 48 49 50 sylanbrc φY0˙Z0˙ZV0˙
52 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 39 40 41 42 43 47 51 hdmap1l6j φY0˙Z0˙IXFY+˙Z=IXFY˙IXFZ
53 30 38 52 pm2.61da2ne φIXFY+˙Z=IXFY˙IXFZ