Metamath Proof Explorer


Theorem hdmap1l6k

Description: Lemmma for hdmap1l6 . Eliminate nonzero vector requirement. (Contributed by NM, 1-May-2015)

Ref Expression
Hypotheses hdmap1l6.h H = LHyp K
hdmap1l6.u U = DVecH K W
hdmap1l6.v V = Base U
hdmap1l6.p + ˙ = + U
hdmap1l6.s - ˙ = - U
hdmap1l6c.o 0 ˙ = 0 U
hdmap1l6.n N = LSpan U
hdmap1l6.c C = LCDual K W
hdmap1l6.d D = Base C
hdmap1l6.a ˙ = + C
hdmap1l6.r R = - C
hdmap1l6.q Q = 0 C
hdmap1l6.l L = LSpan C
hdmap1l6.m M = mapd K W
hdmap1l6.i I = HDMap1 K W
hdmap1l6.k φ K HL W H
hdmap1l6.f φ F D
hdmap1l6cl.x φ X V 0 ˙
hdmap1l6.mn φ M N X = L F
hdmap1l6k.y φ Y V
hdmap1l6k.z φ Z V
hdmap1l6k.xn φ ¬ X N Y Z
Assertion hdmap1l6k φ I X F Y + ˙ Z = I X F Y ˙ I X F Z

Proof

Step Hyp Ref Expression
1 hdmap1l6.h H = LHyp K
2 hdmap1l6.u U = DVecH K W
3 hdmap1l6.v V = Base U
4 hdmap1l6.p + ˙ = + U
5 hdmap1l6.s - ˙ = - U
6 hdmap1l6c.o 0 ˙ = 0 U
7 hdmap1l6.n N = LSpan U
8 hdmap1l6.c C = LCDual K W
9 hdmap1l6.d D = Base C
10 hdmap1l6.a ˙ = + C
11 hdmap1l6.r R = - C
12 hdmap1l6.q Q = 0 C
13 hdmap1l6.l L = LSpan C
14 hdmap1l6.m M = mapd K W
15 hdmap1l6.i I = HDMap1 K W
16 hdmap1l6.k φ K HL W H
17 hdmap1l6.f φ F D
18 hdmap1l6cl.x φ X V 0 ˙
19 hdmap1l6.mn φ M N X = L F
20 hdmap1l6k.y φ Y V
21 hdmap1l6k.z φ Z V
22 hdmap1l6k.xn φ ¬ X N Y Z
23 16 adantr φ Y = 0 ˙ K HL W H
24 17 adantr φ Y = 0 ˙ F D
25 18 adantr φ Y = 0 ˙ X V 0 ˙
26 19 adantr φ Y = 0 ˙ M N X = L F
27 simpr φ Y = 0 ˙ Y = 0 ˙
28 21 adantr φ Y = 0 ˙ Z V
29 22 adantr φ Y = 0 ˙ ¬ X N Y Z
30 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 23 24 25 26 27 28 29 hdmap1l6b φ Y = 0 ˙ I X F Y + ˙ Z = I X F Y ˙ I X F Z
31 16 adantr φ Z = 0 ˙ K HL W H
32 17 adantr φ Z = 0 ˙ F D
33 18 adantr φ Z = 0 ˙ X V 0 ˙
34 19 adantr φ Z = 0 ˙ M N X = L F
35 20 adantr φ Z = 0 ˙ Y V
36 simpr φ Z = 0 ˙ Z = 0 ˙
37 22 adantr φ Z = 0 ˙ ¬ X N Y Z
38 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 31 32 33 34 35 36 37 hdmap1l6c φ Z = 0 ˙ I X F Y + ˙ Z = I X F Y ˙ I X F Z
39 16 adantr φ Y 0 ˙ Z 0 ˙ K HL W H
40 17 adantr φ Y 0 ˙ Z 0 ˙ F D
41 18 adantr φ Y 0 ˙ Z 0 ˙ X V 0 ˙
42 19 adantr φ Y 0 ˙ Z 0 ˙ M N X = L F
43 22 adantr φ Y 0 ˙ Z 0 ˙ ¬ X N Y Z
44 20 adantr φ Y 0 ˙ Z 0 ˙ Y V
45 simprl φ Y 0 ˙ Z 0 ˙ Y 0 ˙
46 eldifsn Y V 0 ˙ Y V Y 0 ˙
47 44 45 46 sylanbrc φ Y 0 ˙ Z 0 ˙ Y V 0 ˙
48 21 adantr φ Y 0 ˙ Z 0 ˙ Z V
49 simprr φ Y 0 ˙ Z 0 ˙ Z 0 ˙
50 eldifsn Z V 0 ˙ Z V Z 0 ˙
51 48 49 50 sylanbrc φ Y 0 ˙ Z 0 ˙ Z V 0 ˙
52 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 39 40 41 42 43 47 51 hdmap1l6j φ Y 0 ˙ Z 0 ˙ I X F Y + ˙ Z = I X F Y ˙ I X F Z
53 30 38 52 pm2.61da2ne φ I X F Y + ˙ Z = I X F Y ˙ I X F Z