| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hdmap1l6.h |
|- H = ( LHyp ` K ) |
| 2 |
|
hdmap1l6.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 3 |
|
hdmap1l6.v |
|- V = ( Base ` U ) |
| 4 |
|
hdmap1l6.p |
|- .+ = ( +g ` U ) |
| 5 |
|
hdmap1l6.s |
|- .- = ( -g ` U ) |
| 6 |
|
hdmap1l6c.o |
|- .0. = ( 0g ` U ) |
| 7 |
|
hdmap1l6.n |
|- N = ( LSpan ` U ) |
| 8 |
|
hdmap1l6.c |
|- C = ( ( LCDual ` K ) ` W ) |
| 9 |
|
hdmap1l6.d |
|- D = ( Base ` C ) |
| 10 |
|
hdmap1l6.a |
|- .+b = ( +g ` C ) |
| 11 |
|
hdmap1l6.r |
|- R = ( -g ` C ) |
| 12 |
|
hdmap1l6.q |
|- Q = ( 0g ` C ) |
| 13 |
|
hdmap1l6.l |
|- L = ( LSpan ` C ) |
| 14 |
|
hdmap1l6.m |
|- M = ( ( mapd ` K ) ` W ) |
| 15 |
|
hdmap1l6.i |
|- I = ( ( HDMap1 ` K ) ` W ) |
| 16 |
|
hdmap1l6.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 17 |
|
hdmap1l6.f |
|- ( ph -> F e. D ) |
| 18 |
|
hdmap1l6cl.x |
|- ( ph -> X e. ( V \ { .0. } ) ) |
| 19 |
|
hdmap1l6.mn |
|- ( ph -> ( M ` ( N ` { X } ) ) = ( L ` { F } ) ) |
| 20 |
|
hdmap1l6i.xn |
|- ( ph -> -. X e. ( N ` { Y , Z } ) ) |
| 21 |
|
hdmap1l6i.y |
|- ( ph -> Y e. ( V \ { .0. } ) ) |
| 22 |
|
hdmap1l6i.z |
|- ( ph -> Z e. ( V \ { .0. } ) ) |
| 23 |
16
|
adantr |
|- ( ( ph /\ ( N ` { Y } ) = ( N ` { Z } ) ) -> ( K e. HL /\ W e. H ) ) |
| 24 |
17
|
adantr |
|- ( ( ph /\ ( N ` { Y } ) = ( N ` { Z } ) ) -> F e. D ) |
| 25 |
18
|
adantr |
|- ( ( ph /\ ( N ` { Y } ) = ( N ` { Z } ) ) -> X e. ( V \ { .0. } ) ) |
| 26 |
19
|
adantr |
|- ( ( ph /\ ( N ` { Y } ) = ( N ` { Z } ) ) -> ( M ` ( N ` { X } ) ) = ( L ` { F } ) ) |
| 27 |
20
|
adantr |
|- ( ( ph /\ ( N ` { Y } ) = ( N ` { Z } ) ) -> -. X e. ( N ` { Y , Z } ) ) |
| 28 |
21
|
adantr |
|- ( ( ph /\ ( N ` { Y } ) = ( N ` { Z } ) ) -> Y e. ( V \ { .0. } ) ) |
| 29 |
22
|
adantr |
|- ( ( ph /\ ( N ` { Y } ) = ( N ` { Z } ) ) -> Z e. ( V \ { .0. } ) ) |
| 30 |
|
simpr |
|- ( ( ph /\ ( N ` { Y } ) = ( N ` { Z } ) ) -> ( N ` { Y } ) = ( N ` { Z } ) ) |
| 31 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 23 24 25 26 27 28 29 30
|
hdmap1l6i |
|- ( ( ph /\ ( N ` { Y } ) = ( N ` { Z } ) ) -> ( I ` <. X , F , ( Y .+ Z ) >. ) = ( ( I ` <. X , F , Y >. ) .+b ( I ` <. X , F , Z >. ) ) ) |
| 32 |
16
|
adantr |
|- ( ( ph /\ ( N ` { Y } ) =/= ( N ` { Z } ) ) -> ( K e. HL /\ W e. H ) ) |
| 33 |
17
|
adantr |
|- ( ( ph /\ ( N ` { Y } ) =/= ( N ` { Z } ) ) -> F e. D ) |
| 34 |
18
|
adantr |
|- ( ( ph /\ ( N ` { Y } ) =/= ( N ` { Z } ) ) -> X e. ( V \ { .0. } ) ) |
| 35 |
19
|
adantr |
|- ( ( ph /\ ( N ` { Y } ) =/= ( N ` { Z } ) ) -> ( M ` ( N ` { X } ) ) = ( L ` { F } ) ) |
| 36 |
21
|
adantr |
|- ( ( ph /\ ( N ` { Y } ) =/= ( N ` { Z } ) ) -> Y e. ( V \ { .0. } ) ) |
| 37 |
22
|
adantr |
|- ( ( ph /\ ( N ` { Y } ) =/= ( N ` { Z } ) ) -> Z e. ( V \ { .0. } ) ) |
| 38 |
20
|
adantr |
|- ( ( ph /\ ( N ` { Y } ) =/= ( N ` { Z } ) ) -> -. X e. ( N ` { Y , Z } ) ) |
| 39 |
|
simpr |
|- ( ( ph /\ ( N ` { Y } ) =/= ( N ` { Z } ) ) -> ( N ` { Y } ) =/= ( N ` { Z } ) ) |
| 40 |
|
eqidd |
|- ( ( ph /\ ( N ` { Y } ) =/= ( N ` { Z } ) ) -> ( I ` <. X , F , Y >. ) = ( I ` <. X , F , Y >. ) ) |
| 41 |
|
eqidd |
|- ( ( ph /\ ( N ` { Y } ) =/= ( N ` { Z } ) ) -> ( I ` <. X , F , Z >. ) = ( I ` <. X , F , Z >. ) ) |
| 42 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 32 33 34 35 36 37 38 39 40 41
|
hdmap1l6a |
|- ( ( ph /\ ( N ` { Y } ) =/= ( N ` { Z } ) ) -> ( I ` <. X , F , ( Y .+ Z ) >. ) = ( ( I ` <. X , F , Y >. ) .+b ( I ` <. X , F , Z >. ) ) ) |
| 43 |
31 42
|
pm2.61dane |
|- ( ph -> ( I ` <. X , F , ( Y .+ Z ) >. ) = ( ( I ` <. X , F , Y >. ) .+b ( I ` <. X , F , Z >. ) ) ) |