Metamath Proof Explorer


Theorem hdmap1l6h

Description: Lemmma for hdmap1l6 . Part (6) of Baer p. 48 line 2. (Contributed by NM, 1-May-2015)

Ref Expression
Hypotheses hdmap1l6.h 𝐻 = ( LHyp ‘ 𝐾 )
hdmap1l6.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
hdmap1l6.v 𝑉 = ( Base ‘ 𝑈 )
hdmap1l6.p + = ( +g𝑈 )
hdmap1l6.s = ( -g𝑈 )
hdmap1l6c.o 0 = ( 0g𝑈 )
hdmap1l6.n 𝑁 = ( LSpan ‘ 𝑈 )
hdmap1l6.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
hdmap1l6.d 𝐷 = ( Base ‘ 𝐶 )
hdmap1l6.a = ( +g𝐶 )
hdmap1l6.r 𝑅 = ( -g𝐶 )
hdmap1l6.q 𝑄 = ( 0g𝐶 )
hdmap1l6.l 𝐿 = ( LSpan ‘ 𝐶 )
hdmap1l6.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
hdmap1l6.i 𝐼 = ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 )
hdmap1l6.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
hdmap1l6.f ( 𝜑𝐹𝐷 )
hdmap1l6cl.x ( 𝜑𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
hdmap1l6.mn ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐿 ‘ { 𝐹 } ) )
hdmap1l6d.xn ( 𝜑 → ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) )
hdmap1l6d.yz ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) = ( 𝑁 ‘ { 𝑍 } ) )
hdmap1l6d.y ( 𝜑𝑌 ∈ ( 𝑉 ∖ { 0 } ) )
hdmap1l6d.z ( 𝜑𝑍 ∈ ( 𝑉 ∖ { 0 } ) )
hdmap1l6d.w ( 𝜑𝑤 ∈ ( 𝑉 ∖ { 0 } ) )
hdmap1l6d.wn ( 𝜑 → ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) )
Assertion hdmap1l6h ( 𝜑 → ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , ( 𝑌 + 𝑍 ) ⟩ ) = ( ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑌 ⟩ ) ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑍 ⟩ ) ) )

Proof

Step Hyp Ref Expression
1 hdmap1l6.h 𝐻 = ( LHyp ‘ 𝐾 )
2 hdmap1l6.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
3 hdmap1l6.v 𝑉 = ( Base ‘ 𝑈 )
4 hdmap1l6.p + = ( +g𝑈 )
5 hdmap1l6.s = ( -g𝑈 )
6 hdmap1l6c.o 0 = ( 0g𝑈 )
7 hdmap1l6.n 𝑁 = ( LSpan ‘ 𝑈 )
8 hdmap1l6.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
9 hdmap1l6.d 𝐷 = ( Base ‘ 𝐶 )
10 hdmap1l6.a = ( +g𝐶 )
11 hdmap1l6.r 𝑅 = ( -g𝐶 )
12 hdmap1l6.q 𝑄 = ( 0g𝐶 )
13 hdmap1l6.l 𝐿 = ( LSpan ‘ 𝐶 )
14 hdmap1l6.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
15 hdmap1l6.i 𝐼 = ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 )
16 hdmap1l6.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
17 hdmap1l6.f ( 𝜑𝐹𝐷 )
18 hdmap1l6cl.x ( 𝜑𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
19 hdmap1l6.mn ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐿 ‘ { 𝐹 } ) )
20 hdmap1l6d.xn ( 𝜑 → ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) )
21 hdmap1l6d.yz ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) = ( 𝑁 ‘ { 𝑍 } ) )
22 hdmap1l6d.y ( 𝜑𝑌 ∈ ( 𝑉 ∖ { 0 } ) )
23 hdmap1l6d.z ( 𝜑𝑍 ∈ ( 𝑉 ∖ { 0 } ) )
24 hdmap1l6d.w ( 𝜑𝑤 ∈ ( 𝑉 ∖ { 0 } ) )
25 hdmap1l6d.wn ( 𝜑 → ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) )
26 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 hdmap1l6g ( 𝜑 → ( ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑤 ⟩ ) ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , ( 𝑌 + 𝑍 ) ⟩ ) ) = ( ( ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑤 ⟩ ) ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑌 ⟩ ) ) ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑍 ⟩ ) ) )
27 1 8 16 lcdlmod ( 𝜑𝐶 ∈ LMod )
28 1 2 16 dvhlvec ( 𝜑𝑈 ∈ LVec )
29 24 eldifad ( 𝜑𝑤𝑉 )
30 18 eldifad ( 𝜑𝑋𝑉 )
31 22 eldifad ( 𝜑𝑌𝑉 )
32 3 7 28 29 30 31 25 lspindpi ( 𝜑 → ( ( 𝑁 ‘ { 𝑤 } ) ≠ ( 𝑁 ‘ { 𝑋 } ) ∧ ( 𝑁 ‘ { 𝑤 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) )
33 32 simpld ( 𝜑 → ( 𝑁 ‘ { 𝑤 } ) ≠ ( 𝑁 ‘ { 𝑋 } ) )
34 33 necomd ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑤 } ) )
35 1 2 3 6 7 8 9 13 14 15 16 17 19 34 18 29 hdmap1cl ( 𝜑 → ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑤 ⟩ ) ∈ 𝐷 )
36 23 eldifad ( 𝜑𝑍𝑉 )
37 3 7 28 30 31 36 20 lspindpi ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ∧ ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑍 } ) ) )
38 37 simpld ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) )
39 1 2 3 6 7 8 9 13 14 15 16 17 19 38 18 31 hdmap1cl ( 𝜑 → ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑌 ⟩ ) ∈ 𝐷 )
40 37 simprd ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑍 } ) )
41 1 2 3 6 7 8 9 13 14 15 16 17 19 40 18 36 hdmap1cl ( 𝜑 → ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑍 ⟩ ) ∈ 𝐷 )
42 9 10 lmodass ( ( 𝐶 ∈ LMod ∧ ( ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑤 ⟩ ) ∈ 𝐷 ∧ ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑌 ⟩ ) ∈ 𝐷 ∧ ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑍 ⟩ ) ∈ 𝐷 ) ) → ( ( ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑤 ⟩ ) ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑌 ⟩ ) ) ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑍 ⟩ ) ) = ( ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑤 ⟩ ) ( ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑌 ⟩ ) ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑍 ⟩ ) ) ) )
43 27 35 39 41 42 syl13anc ( 𝜑 → ( ( ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑤 ⟩ ) ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑌 ⟩ ) ) ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑍 ⟩ ) ) = ( ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑤 ⟩ ) ( ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑌 ⟩ ) ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑍 ⟩ ) ) ) )
44 26 43 eqtrd ( 𝜑 → ( ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑤 ⟩ ) ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , ( 𝑌 + 𝑍 ) ⟩ ) ) = ( ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑤 ⟩ ) ( ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑌 ⟩ ) ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑍 ⟩ ) ) ) )
45 3 4 6 7 28 18 22 23 24 21 38 25 mapdindp1 ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { ( 𝑌 + 𝑍 ) } ) )
46 1 2 16 dvhlmod ( 𝜑𝑈 ∈ LMod )
47 3 4 lmodvacl ( ( 𝑈 ∈ LMod ∧ 𝑌𝑉𝑍𝑉 ) → ( 𝑌 + 𝑍 ) ∈ 𝑉 )
48 46 31 36 47 syl3anc ( 𝜑 → ( 𝑌 + 𝑍 ) ∈ 𝑉 )
49 1 2 3 6 7 8 9 13 14 15 16 17 19 45 18 48 hdmap1cl ( 𝜑 → ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , ( 𝑌 + 𝑍 ) ⟩ ) ∈ 𝐷 )
50 9 10 lmodvacl ( ( 𝐶 ∈ LMod ∧ ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑌 ⟩ ) ∈ 𝐷 ∧ ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑍 ⟩ ) ∈ 𝐷 ) → ( ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑌 ⟩ ) ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑍 ⟩ ) ) ∈ 𝐷 )
51 27 39 41 50 syl3anc ( 𝜑 → ( ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑌 ⟩ ) ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑍 ⟩ ) ) ∈ 𝐷 )
52 9 10 lmodlcan ( ( 𝐶 ∈ LMod ∧ ( ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , ( 𝑌 + 𝑍 ) ⟩ ) ∈ 𝐷 ∧ ( ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑌 ⟩ ) ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑍 ⟩ ) ) ∈ 𝐷 ∧ ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑤 ⟩ ) ∈ 𝐷 ) ) → ( ( ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑤 ⟩ ) ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , ( 𝑌 + 𝑍 ) ⟩ ) ) = ( ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑤 ⟩ ) ( ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑌 ⟩ ) ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑍 ⟩ ) ) ) ↔ ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , ( 𝑌 + 𝑍 ) ⟩ ) = ( ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑌 ⟩ ) ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑍 ⟩ ) ) ) )
53 27 49 51 35 52 syl13anc ( 𝜑 → ( ( ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑤 ⟩ ) ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , ( 𝑌 + 𝑍 ) ⟩ ) ) = ( ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑤 ⟩ ) ( ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑌 ⟩ ) ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑍 ⟩ ) ) ) ↔ ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , ( 𝑌 + 𝑍 ) ⟩ ) = ( ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑌 ⟩ ) ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑍 ⟩ ) ) ) )
54 44 53 mpbid ( 𝜑 → ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , ( 𝑌 + 𝑍 ) ⟩ ) = ( ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑌 ⟩ ) ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑍 ⟩ ) ) )