Metamath Proof Explorer


Theorem mapdh6aN

Description: Lemma for mapdh6N . Part (6) in Baer p. 47, case 1. (Contributed by NM, 23-Apr-2015) (New usage is discouraged.)

Ref Expression
Hypotheses mapdh.q Q = 0 C
mapdh.i I = x V if 2 nd x = 0 ˙ Q ι h D | M N 2 nd x = J h M N 1 st 1 st x - ˙ 2 nd x = J 2 nd 1 st x R h
mapdh.h H = LHyp K
mapdh.m M = mapd K W
mapdh.u U = DVecH K W
mapdh.v V = Base U
mapdh.s - ˙ = - U
mapdhc.o 0 ˙ = 0 U
mapdh.n N = LSpan U
mapdh.c C = LCDual K W
mapdh.d D = Base C
mapdh.r R = - C
mapdh.j J = LSpan C
mapdh.k φ K HL W H
mapdhc.f φ F D
mapdh.mn φ M N X = J F
mapdhcl.x φ X V 0 ˙
mapdh.p + ˙ = + U
mapdh.a ˙ = + C
mapdhe6.y φ Y V 0 ˙
mapdhe6.z φ Z V 0 ˙
mapdhe6.xn φ ¬ X N Y Z
mapdh6.yz φ N Y N Z
mapdh6.fg φ I X F Y = G
mapdh6.fe φ I X F Z = E
Assertion mapdh6aN φ I X F Y + ˙ Z = I X F Y ˙ I X F Z

Proof

Step Hyp Ref Expression
1 mapdh.q Q = 0 C
2 mapdh.i I = x V if 2 nd x = 0 ˙ Q ι h D | M N 2 nd x = J h M N 1 st 1 st x - ˙ 2 nd x = J 2 nd 1 st x R h
3 mapdh.h H = LHyp K
4 mapdh.m M = mapd K W
5 mapdh.u U = DVecH K W
6 mapdh.v V = Base U
7 mapdh.s - ˙ = - U
8 mapdhc.o 0 ˙ = 0 U
9 mapdh.n N = LSpan U
10 mapdh.c C = LCDual K W
11 mapdh.d D = Base C
12 mapdh.r R = - C
13 mapdh.j J = LSpan C
14 mapdh.k φ K HL W H
15 mapdhc.f φ F D
16 mapdh.mn φ M N X = J F
17 mapdhcl.x φ X V 0 ˙
18 mapdh.p + ˙ = + U
19 mapdh.a ˙ = + C
20 mapdhe6.y φ Y V 0 ˙
21 mapdhe6.z φ Z V 0 ˙
22 mapdhe6.xn φ ¬ X N Y Z
23 mapdh6.yz φ N Y N Z
24 mapdh6.fg φ I X F Y = G
25 mapdh6.fe φ I X F Z = E
26 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 mapdh6lem2N φ M N Y + ˙ Z = J G ˙ E
27 24 25 oveq12d φ I X F Y ˙ I X F Z = G ˙ E
28 27 sneqd φ I X F Y ˙ I X F Z = G ˙ E
29 28 fveq2d φ J I X F Y ˙ I X F Z = J G ˙ E
30 26 29 eqtr4d φ M N Y + ˙ Z = J I X F Y ˙ I X F Z
31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 mapdh6lem1N φ M N X - ˙ Y + ˙ Z = J F R G ˙ E
32 27 oveq2d φ F R I X F Y ˙ I X F Z = F R G ˙ E
33 32 sneqd φ F R I X F Y ˙ I X F Z = F R G ˙ E
34 33 fveq2d φ J F R I X F Y ˙ I X F Z = J F R G ˙ E
35 31 34 eqtr4d φ M N X - ˙ Y + ˙ Z = J F R I X F Y ˙ I X F Z
36 3 5 14 dvhlmod φ U LMod
37 20 eldifad φ Y V
38 21 eldifad φ Z V
39 6 18 lmodvacl U LMod Y V Z V Y + ˙ Z V
40 36 37 38 39 syl3anc φ Y + ˙ Z V
41 6 18 8 9 36 37 38 23 lmodindp1 φ Y + ˙ Z 0 ˙
42 eldifsn Y + ˙ Z V 0 ˙ Y + ˙ Z V Y + ˙ Z 0 ˙
43 40 41 42 sylanbrc φ Y + ˙ Z V 0 ˙
44 3 10 14 lcdlmod φ C LMod
45 3 5 14 dvhlvec φ U LVec
46 17 eldifad φ X V
47 6 8 9 45 37 21 46 23 22 lspindp2 φ N X N Y ¬ Z N X Y
48 47 simpld φ N X N Y
49 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 37 48 mapdhcl φ I X F Y D
50 6 8 9 45 20 38 46 23 22 lspindp1 φ N X N Z ¬ Y N X Z
51 50 simpld φ N X N Z
52 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 38 51 mapdhcl φ I X F Z D
53 11 19 lmodvacl C LMod I X F Y D I X F Z D I X F Y ˙ I X F Z D
54 44 49 52 53 syl3anc φ I X F Y ˙ I X F Z D
55 eqid LSubSp U = LSubSp U
56 6 55 9 36 37 38 lspprcl φ N Y Z LSubSp U
57 6 18 9 36 37 38 lspprvacl φ Y + ˙ Z N Y Z
58 55 9 36 56 57 lspsnel5a φ N Y + ˙ Z N Y Z
59 6 55 9 36 56 46 lspsnel5 φ X N Y Z N X N Y Z
60 22 59 mtbid φ ¬ N X N Y Z
61 nssne2 N Y + ˙ Z N Y Z ¬ N X N Y Z N Y + ˙ Z N X
62 58 60 61 syl2anc φ N Y + ˙ Z N X
63 62 necomd φ N X N Y + ˙ Z
64 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 43 54 63 mapdheq φ I X F Y + ˙ Z = I X F Y ˙ I X F Z M N Y + ˙ Z = J I X F Y ˙ I X F Z M N X - ˙ Y + ˙ Z = J F R I X F Y ˙ I X F Z
65 30 35 64 mpbir2and φ I X F Y + ˙ Z = I X F Y ˙ I X F Z