Step |
Hyp |
Ref |
Expression |
1 |
|
mapdh.q |
⊢ 𝑄 = ( 0g ‘ 𝐶 ) |
2 |
|
mapdh.i |
⊢ 𝐼 = ( 𝑥 ∈ V ↦ if ( ( 2nd ‘ 𝑥 ) = 0 , 𝑄 , ( ℩ ℎ ∈ 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 2nd ‘ 𝑥 ) } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st ‘ ( 1st ‘ 𝑥 ) ) − ( 2nd ‘ 𝑥 ) ) } ) ) = ( 𝐽 ‘ { ( ( 2nd ‘ ( 1st ‘ 𝑥 ) ) 𝑅 ℎ ) } ) ) ) ) ) |
3 |
|
mapdh.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
4 |
|
mapdh.m |
⊢ 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
mapdh.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
|
mapdh.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
7 |
|
mapdh.s |
⊢ − = ( -g ‘ 𝑈 ) |
8 |
|
mapdhc.o |
⊢ 0 = ( 0g ‘ 𝑈 ) |
9 |
|
mapdh.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
10 |
|
mapdh.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
11 |
|
mapdh.d |
⊢ 𝐷 = ( Base ‘ 𝐶 ) |
12 |
|
mapdh.r |
⊢ 𝑅 = ( -g ‘ 𝐶 ) |
13 |
|
mapdh.j |
⊢ 𝐽 = ( LSpan ‘ 𝐶 ) |
14 |
|
mapdh.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
15 |
|
mapdhc.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐷 ) |
16 |
|
mapdh.mn |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐽 ‘ { 𝐹 } ) ) |
17 |
|
mapdhcl.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
18 |
|
mapdh.p |
⊢ + = ( +g ‘ 𝑈 ) |
19 |
|
mapdh.a |
⊢ ✚ = ( +g ‘ 𝐶 ) |
20 |
|
mapdhe6.y |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝑉 ∖ { 0 } ) ) |
21 |
|
mapdhe6.z |
⊢ ( 𝜑 → 𝑍 ∈ ( 𝑉 ∖ { 0 } ) ) |
22 |
|
mapdhe6.xn |
⊢ ( 𝜑 → ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) |
23 |
|
mapdh6.yz |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ≠ ( 𝑁 ‘ { 𝑍 } ) ) |
24 |
|
mapdh6.fg |
⊢ ( 𝜑 → ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) = 𝐺 ) |
25 |
|
mapdh6.fe |
⊢ ( 𝜑 → ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑍 〉 ) = 𝐸 ) |
26 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
|
mapdh6lem2N |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑌 + 𝑍 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 ✚ 𝐸 ) } ) ) |
27 |
24 25
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ✚ ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑍 〉 ) ) = ( 𝐺 ✚ 𝐸 ) ) |
28 |
27
|
sneqd |
⊢ ( 𝜑 → { ( ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ✚ ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑍 〉 ) ) } = { ( 𝐺 ✚ 𝐸 ) } ) |
29 |
28
|
fveq2d |
⊢ ( 𝜑 → ( 𝐽 ‘ { ( ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ✚ ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑍 〉 ) ) } ) = ( 𝐽 ‘ { ( 𝐺 ✚ 𝐸 ) } ) ) |
30 |
26 29
|
eqtr4d |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑌 + 𝑍 ) } ) ) = ( 𝐽 ‘ { ( ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ✚ ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑍 〉 ) ) } ) ) |
31 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
|
mapdh6lem1N |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − ( 𝑌 + 𝑍 ) ) } ) ) = ( 𝐽 ‘ { ( 𝐹 𝑅 ( 𝐺 ✚ 𝐸 ) ) } ) ) |
32 |
27
|
oveq2d |
⊢ ( 𝜑 → ( 𝐹 𝑅 ( ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ✚ ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑍 〉 ) ) ) = ( 𝐹 𝑅 ( 𝐺 ✚ 𝐸 ) ) ) |
33 |
32
|
sneqd |
⊢ ( 𝜑 → { ( 𝐹 𝑅 ( ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ✚ ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑍 〉 ) ) ) } = { ( 𝐹 𝑅 ( 𝐺 ✚ 𝐸 ) ) } ) |
34 |
33
|
fveq2d |
⊢ ( 𝜑 → ( 𝐽 ‘ { ( 𝐹 𝑅 ( ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ✚ ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑍 〉 ) ) ) } ) = ( 𝐽 ‘ { ( 𝐹 𝑅 ( 𝐺 ✚ 𝐸 ) ) } ) ) |
35 |
31 34
|
eqtr4d |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − ( 𝑌 + 𝑍 ) ) } ) ) = ( 𝐽 ‘ { ( 𝐹 𝑅 ( ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ✚ ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑍 〉 ) ) ) } ) ) |
36 |
3 5 14
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
37 |
20
|
eldifad |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
38 |
21
|
eldifad |
⊢ ( 𝜑 → 𝑍 ∈ 𝑉 ) |
39 |
6 18
|
lmodvacl |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉 ) → ( 𝑌 + 𝑍 ) ∈ 𝑉 ) |
40 |
36 37 38 39
|
syl3anc |
⊢ ( 𝜑 → ( 𝑌 + 𝑍 ) ∈ 𝑉 ) |
41 |
6 18 8 9 36 37 38 23
|
lmodindp1 |
⊢ ( 𝜑 → ( 𝑌 + 𝑍 ) ≠ 0 ) |
42 |
|
eldifsn |
⊢ ( ( 𝑌 + 𝑍 ) ∈ ( 𝑉 ∖ { 0 } ) ↔ ( ( 𝑌 + 𝑍 ) ∈ 𝑉 ∧ ( 𝑌 + 𝑍 ) ≠ 0 ) ) |
43 |
40 41 42
|
sylanbrc |
⊢ ( 𝜑 → ( 𝑌 + 𝑍 ) ∈ ( 𝑉 ∖ { 0 } ) ) |
44 |
3 10 14
|
lcdlmod |
⊢ ( 𝜑 → 𝐶 ∈ LMod ) |
45 |
3 5 14
|
dvhlvec |
⊢ ( 𝜑 → 𝑈 ∈ LVec ) |
46 |
17
|
eldifad |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
47 |
6 8 9 45 37 21 46 23 22
|
lspindp2 |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ∧ ¬ 𝑍 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) ) |
48 |
47
|
simpld |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) |
49 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 37 48
|
mapdhcl |
⊢ ( 𝜑 → ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ∈ 𝐷 ) |
50 |
6 8 9 45 20 38 46 23 22
|
lspindp1 |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑍 } ) ∧ ¬ 𝑌 ∈ ( 𝑁 ‘ { 𝑋 , 𝑍 } ) ) ) |
51 |
50
|
simpld |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑍 } ) ) |
52 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 38 51
|
mapdhcl |
⊢ ( 𝜑 → ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑍 〉 ) ∈ 𝐷 ) |
53 |
11 19
|
lmodvacl |
⊢ ( ( 𝐶 ∈ LMod ∧ ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ∈ 𝐷 ∧ ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑍 〉 ) ∈ 𝐷 ) → ( ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ✚ ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑍 〉 ) ) ∈ 𝐷 ) |
54 |
44 49 52 53
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ✚ ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑍 〉 ) ) ∈ 𝐷 ) |
55 |
|
eqid |
⊢ ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 ) |
56 |
6 55 9 36 37 38
|
lspprcl |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
57 |
6 18 9 36 37 38
|
lspprvacl |
⊢ ( 𝜑 → ( 𝑌 + 𝑍 ) ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) |
58 |
55 9 36 56 57
|
lspsnel5a |
⊢ ( 𝜑 → ( 𝑁 ‘ { ( 𝑌 + 𝑍 ) } ) ⊆ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) |
59 |
6 55 9 36 56 46
|
lspsnel5 |
⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ↔ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) ) |
60 |
22 59
|
mtbid |
⊢ ( 𝜑 → ¬ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) |
61 |
|
nssne2 |
⊢ ( ( ( 𝑁 ‘ { ( 𝑌 + 𝑍 ) } ) ⊆ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ∧ ¬ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) → ( 𝑁 ‘ { ( 𝑌 + 𝑍 ) } ) ≠ ( 𝑁 ‘ { 𝑋 } ) ) |
62 |
58 60 61
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { ( 𝑌 + 𝑍 ) } ) ≠ ( 𝑁 ‘ { 𝑋 } ) ) |
63 |
62
|
necomd |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { ( 𝑌 + 𝑍 ) } ) ) |
64 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 43 54 63
|
mapdheq |
⊢ ( 𝜑 → ( ( 𝐼 ‘ 〈 𝑋 , 𝐹 , ( 𝑌 + 𝑍 ) 〉 ) = ( ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ✚ ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑍 〉 ) ) ↔ ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑌 + 𝑍 ) } ) ) = ( 𝐽 ‘ { ( ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ✚ ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑍 〉 ) ) } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − ( 𝑌 + 𝑍 ) ) } ) ) = ( 𝐽 ‘ { ( 𝐹 𝑅 ( ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ✚ ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑍 〉 ) ) ) } ) ) ) ) |
65 |
30 35 64
|
mpbir2and |
⊢ ( 𝜑 → ( 𝐼 ‘ 〈 𝑋 , 𝐹 , ( 𝑌 + 𝑍 ) 〉 ) = ( ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ✚ ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑍 〉 ) ) ) |