Metamath Proof Explorer


Theorem mapdh6b0N

Description: Lemmma for mapdh6N . (Contributed by NM, 23-Apr-2015) (New usage is discouraged.)

Ref Expression
Hypotheses mapdh.q 𝑄 = ( 0g𝐶 )
mapdh.i 𝐼 = ( 𝑥 ∈ V ↦ if ( ( 2nd𝑥 ) = 0 , 𝑄 , ( 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 2nd𝑥 ) } ) ) = ( 𝐽 ‘ { } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st ‘ ( 1st𝑥 ) ) ( 2nd𝑥 ) ) } ) ) = ( 𝐽 ‘ { ( ( 2nd ‘ ( 1st𝑥 ) ) 𝑅 ) } ) ) ) ) )
mapdh.h 𝐻 = ( LHyp ‘ 𝐾 )
mapdh.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
mapdh.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
mapdh.v 𝑉 = ( Base ‘ 𝑈 )
mapdh.s = ( -g𝑈 )
mapdhc.o 0 = ( 0g𝑈 )
mapdh.n 𝑁 = ( LSpan ‘ 𝑈 )
mapdh.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
mapdh.d 𝐷 = ( Base ‘ 𝐶 )
mapdh.r 𝑅 = ( -g𝐶 )
mapdh.j 𝐽 = ( LSpan ‘ 𝐶 )
mapdh.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
mapdhc.f ( 𝜑𝐹𝐷 )
mapdh.mn ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐽 ‘ { 𝐹 } ) )
mapdhcl.x ( 𝜑𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
mapdh.p + = ( +g𝑈 )
mapdh.a = ( +g𝐶 )
mapdh6b0.y ( 𝜑𝑌𝑉 )
mapdh6b0.z ( 𝜑𝑍𝑉 )
mapdh6b0.ne ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ∩ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) = { 0 } )
Assertion mapdh6b0N ( 𝜑 → ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) )

Proof

Step Hyp Ref Expression
1 mapdh.q 𝑄 = ( 0g𝐶 )
2 mapdh.i 𝐼 = ( 𝑥 ∈ V ↦ if ( ( 2nd𝑥 ) = 0 , 𝑄 , ( 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 2nd𝑥 ) } ) ) = ( 𝐽 ‘ { } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st ‘ ( 1st𝑥 ) ) ( 2nd𝑥 ) ) } ) ) = ( 𝐽 ‘ { ( ( 2nd ‘ ( 1st𝑥 ) ) 𝑅 ) } ) ) ) ) )
3 mapdh.h 𝐻 = ( LHyp ‘ 𝐾 )
4 mapdh.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
5 mapdh.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
6 mapdh.v 𝑉 = ( Base ‘ 𝑈 )
7 mapdh.s = ( -g𝑈 )
8 mapdhc.o 0 = ( 0g𝑈 )
9 mapdh.n 𝑁 = ( LSpan ‘ 𝑈 )
10 mapdh.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
11 mapdh.d 𝐷 = ( Base ‘ 𝐶 )
12 mapdh.r 𝑅 = ( -g𝐶 )
13 mapdh.j 𝐽 = ( LSpan ‘ 𝐶 )
14 mapdh.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
15 mapdhc.f ( 𝜑𝐹𝐷 )
16 mapdh.mn ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐽 ‘ { 𝐹 } ) )
17 mapdhcl.x ( 𝜑𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
18 mapdh.p + = ( +g𝑈 )
19 mapdh.a = ( +g𝐶 )
20 mapdh6b0.y ( 𝜑𝑌𝑉 )
21 mapdh6b0.z ( 𝜑𝑍𝑉 )
22 mapdh6b0.ne ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ∩ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) = { 0 } )
23 eqid ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 )
24 3 5 14 dvhlvec ( 𝜑𝑈 ∈ LVec )
25 3 5 14 dvhlmod ( 𝜑𝑈 ∈ LMod )
26 6 23 9 25 20 21 lspprcl ( 𝜑 → ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ∈ ( LSubSp ‘ 𝑈 ) )
27 6 8 9 23 24 26 17 lspdisjb ( 𝜑 → ( ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ↔ ( ( 𝑁 ‘ { 𝑋 } ) ∩ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) = { 0 } ) )
28 22 27 mpbird ( 𝜑 → ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) )