Step |
Hyp |
Ref |
Expression |
1 |
|
mapdh.q |
|- Q = ( 0g ` C ) |
2 |
|
mapdh.i |
|- I = ( x e. _V |-> if ( ( 2nd ` x ) = .0. , Q , ( iota_ h e. D ( ( M ` ( N ` { ( 2nd ` x ) } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( ( 1st ` ( 1st ` x ) ) .- ( 2nd ` x ) ) } ) ) = ( J ` { ( ( 2nd ` ( 1st ` x ) ) R h ) } ) ) ) ) ) |
3 |
|
mapdh.h |
|- H = ( LHyp ` K ) |
4 |
|
mapdh.m |
|- M = ( ( mapd ` K ) ` W ) |
5 |
|
mapdh.u |
|- U = ( ( DVecH ` K ) ` W ) |
6 |
|
mapdh.v |
|- V = ( Base ` U ) |
7 |
|
mapdh.s |
|- .- = ( -g ` U ) |
8 |
|
mapdhc.o |
|- .0. = ( 0g ` U ) |
9 |
|
mapdh.n |
|- N = ( LSpan ` U ) |
10 |
|
mapdh.c |
|- C = ( ( LCDual ` K ) ` W ) |
11 |
|
mapdh.d |
|- D = ( Base ` C ) |
12 |
|
mapdh.r |
|- R = ( -g ` C ) |
13 |
|
mapdh.j |
|- J = ( LSpan ` C ) |
14 |
|
mapdh.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
15 |
|
mapdhc.f |
|- ( ph -> F e. D ) |
16 |
|
mapdh.mn |
|- ( ph -> ( M ` ( N ` { X } ) ) = ( J ` { F } ) ) |
17 |
|
mapdhcl.x |
|- ( ph -> X e. ( V \ { .0. } ) ) |
18 |
|
mapdhe4.y |
|- ( ph -> Y e. ( V \ { .0. } ) ) |
19 |
|
mapdhe.z |
|- ( ph -> Z e. ( V \ { .0. } ) ) |
20 |
|
mapdh.xn |
|- ( ph -> -. X e. ( N ` { Y , Z } ) ) |
21 |
|
mapdh.yz |
|- ( ph -> ( N ` { Y } ) =/= ( N ` { Z } ) ) |
22 |
|
mapdh.eg |
|- ( ph -> ( I ` <. X , F , Y >. ) = G ) |
23 |
|
mapdh.ee |
|- ( ph -> ( I ` <. X , F , Z >. ) = E ) |
24 |
|
eqid |
|- ( LSubSp ` U ) = ( LSubSp ` U ) |
25 |
3 5 14
|
dvhlmod |
|- ( ph -> U e. LMod ) |
26 |
18
|
eldifad |
|- ( ph -> Y e. V ) |
27 |
6 24 9
|
lspsncl |
|- ( ( U e. LMod /\ Y e. V ) -> ( N ` { Y } ) e. ( LSubSp ` U ) ) |
28 |
25 26 27
|
syl2anc |
|- ( ph -> ( N ` { Y } ) e. ( LSubSp ` U ) ) |
29 |
19
|
eldifad |
|- ( ph -> Z e. V ) |
30 |
6 24 9
|
lspsncl |
|- ( ( U e. LMod /\ Z e. V ) -> ( N ` { Z } ) e. ( LSubSp ` U ) ) |
31 |
25 29 30
|
syl2anc |
|- ( ph -> ( N ` { Z } ) e. ( LSubSp ` U ) ) |
32 |
|
eqid |
|- ( LSSum ` U ) = ( LSSum ` U ) |
33 |
24 32
|
lsmcl |
|- ( ( U e. LMod /\ ( N ` { Y } ) e. ( LSubSp ` U ) /\ ( N ` { Z } ) e. ( LSubSp ` U ) ) -> ( ( N ` { Y } ) ( LSSum ` U ) ( N ` { Z } ) ) e. ( LSubSp ` U ) ) |
34 |
25 28 31 33
|
syl3anc |
|- ( ph -> ( ( N ` { Y } ) ( LSSum ` U ) ( N ` { Z } ) ) e. ( LSubSp ` U ) ) |
35 |
17
|
eldifad |
|- ( ph -> X e. V ) |
36 |
6 7
|
lmodvsubcl |
|- ( ( U e. LMod /\ X e. V /\ Y e. V ) -> ( X .- Y ) e. V ) |
37 |
25 35 26 36
|
syl3anc |
|- ( ph -> ( X .- Y ) e. V ) |
38 |
6 24 9
|
lspsncl |
|- ( ( U e. LMod /\ ( X .- Y ) e. V ) -> ( N ` { ( X .- Y ) } ) e. ( LSubSp ` U ) ) |
39 |
25 37 38
|
syl2anc |
|- ( ph -> ( N ` { ( X .- Y ) } ) e. ( LSubSp ` U ) ) |
40 |
6 7
|
lmodvsubcl |
|- ( ( U e. LMod /\ X e. V /\ Z e. V ) -> ( X .- Z ) e. V ) |
41 |
25 35 29 40
|
syl3anc |
|- ( ph -> ( X .- Z ) e. V ) |
42 |
6 24 9
|
lspsncl |
|- ( ( U e. LMod /\ ( X .- Z ) e. V ) -> ( N ` { ( X .- Z ) } ) e. ( LSubSp ` U ) ) |
43 |
25 41 42
|
syl2anc |
|- ( ph -> ( N ` { ( X .- Z ) } ) e. ( LSubSp ` U ) ) |
44 |
24 32
|
lsmcl |
|- ( ( U e. LMod /\ ( N ` { ( X .- Y ) } ) e. ( LSubSp ` U ) /\ ( N ` { ( X .- Z ) } ) e. ( LSubSp ` U ) ) -> ( ( N ` { ( X .- Y ) } ) ( LSSum ` U ) ( N ` { ( X .- Z ) } ) ) e. ( LSubSp ` U ) ) |
45 |
25 39 43 44
|
syl3anc |
|- ( ph -> ( ( N ` { ( X .- Y ) } ) ( LSSum ` U ) ( N ` { ( X .- Z ) } ) ) e. ( LSubSp ` U ) ) |
46 |
3 4 5 24 14 34 45
|
mapdin |
|- ( ph -> ( M ` ( ( ( N ` { Y } ) ( LSSum ` U ) ( N ` { Z } ) ) i^i ( ( N ` { ( X .- Y ) } ) ( LSSum ` U ) ( N ` { ( X .- Z ) } ) ) ) ) = ( ( M ` ( ( N ` { Y } ) ( LSSum ` U ) ( N ` { Z } ) ) ) i^i ( M ` ( ( N ` { ( X .- Y ) } ) ( LSSum ` U ) ( N ` { ( X .- Z ) } ) ) ) ) ) |
47 |
|
eqid |
|- ( LSSum ` C ) = ( LSSum ` C ) |
48 |
3 4 5 24 32 10 47 14 28 31
|
mapdlsm |
|- ( ph -> ( M ` ( ( N ` { Y } ) ( LSSum ` U ) ( N ` { Z } ) ) ) = ( ( M ` ( N ` { Y } ) ) ( LSSum ` C ) ( M ` ( N ` { Z } ) ) ) ) |
49 |
3 5 14
|
dvhlvec |
|- ( ph -> U e. LVec ) |
50 |
6 8 9 49 26 19 35 21 20
|
lspindp2 |
|- ( ph -> ( ( N ` { X } ) =/= ( N ` { Y } ) /\ -. Z e. ( N ` { X , Y } ) ) ) |
51 |
50
|
simpld |
|- ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) ) |
52 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 26 51
|
mapdhcl |
|- ( ph -> ( I ` <. X , F , Y >. ) e. D ) |
53 |
22 52
|
eqeltrrd |
|- ( ph -> G e. D ) |
54 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 53 51
|
mapdheq |
|- ( ph -> ( ( I ` <. X , F , Y >. ) = G <-> ( ( M ` ( N ` { Y } ) ) = ( J ` { G } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( F R G ) } ) ) ) ) |
55 |
22 54
|
mpbid |
|- ( ph -> ( ( M ` ( N ` { Y } ) ) = ( J ` { G } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( F R G ) } ) ) ) |
56 |
55
|
simpld |
|- ( ph -> ( M ` ( N ` { Y } ) ) = ( J ` { G } ) ) |
57 |
6 8 9 49 18 29 35 21 20
|
lspindp1 |
|- ( ph -> ( ( N ` { X } ) =/= ( N ` { Z } ) /\ -. Y e. ( N ` { X , Z } ) ) ) |
58 |
57
|
simpld |
|- ( ph -> ( N ` { X } ) =/= ( N ` { Z } ) ) |
59 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 29 58
|
mapdhcl |
|- ( ph -> ( I ` <. X , F , Z >. ) e. D ) |
60 |
23 59
|
eqeltrrd |
|- ( ph -> E e. D ) |
61 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 19 60 58
|
mapdheq |
|- ( ph -> ( ( I ` <. X , F , Z >. ) = E <-> ( ( M ` ( N ` { Z } ) ) = ( J ` { E } ) /\ ( M ` ( N ` { ( X .- Z ) } ) ) = ( J ` { ( F R E ) } ) ) ) ) |
62 |
23 61
|
mpbid |
|- ( ph -> ( ( M ` ( N ` { Z } ) ) = ( J ` { E } ) /\ ( M ` ( N ` { ( X .- Z ) } ) ) = ( J ` { ( F R E ) } ) ) ) |
63 |
62
|
simpld |
|- ( ph -> ( M ` ( N ` { Z } ) ) = ( J ` { E } ) ) |
64 |
56 63
|
oveq12d |
|- ( ph -> ( ( M ` ( N ` { Y } ) ) ( LSSum ` C ) ( M ` ( N ` { Z } ) ) ) = ( ( J ` { G } ) ( LSSum ` C ) ( J ` { E } ) ) ) |
65 |
48 64
|
eqtrd |
|- ( ph -> ( M ` ( ( N ` { Y } ) ( LSSum ` U ) ( N ` { Z } ) ) ) = ( ( J ` { G } ) ( LSSum ` C ) ( J ` { E } ) ) ) |
66 |
3 4 5 24 32 10 47 14 39 43
|
mapdlsm |
|- ( ph -> ( M ` ( ( N ` { ( X .- Y ) } ) ( LSSum ` U ) ( N ` { ( X .- Z ) } ) ) ) = ( ( M ` ( N ` { ( X .- Y ) } ) ) ( LSSum ` C ) ( M ` ( N ` { ( X .- Z ) } ) ) ) ) |
67 |
55
|
simprd |
|- ( ph -> ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( F R G ) } ) ) |
68 |
62
|
simprd |
|- ( ph -> ( M ` ( N ` { ( X .- Z ) } ) ) = ( J ` { ( F R E ) } ) ) |
69 |
67 68
|
oveq12d |
|- ( ph -> ( ( M ` ( N ` { ( X .- Y ) } ) ) ( LSSum ` C ) ( M ` ( N ` { ( X .- Z ) } ) ) ) = ( ( J ` { ( F R G ) } ) ( LSSum ` C ) ( J ` { ( F R E ) } ) ) ) |
70 |
66 69
|
eqtrd |
|- ( ph -> ( M ` ( ( N ` { ( X .- Y ) } ) ( LSSum ` U ) ( N ` { ( X .- Z ) } ) ) ) = ( ( J ` { ( F R G ) } ) ( LSSum ` C ) ( J ` { ( F R E ) } ) ) ) |
71 |
65 70
|
ineq12d |
|- ( ph -> ( ( M ` ( ( N ` { Y } ) ( LSSum ` U ) ( N ` { Z } ) ) ) i^i ( M ` ( ( N ` { ( X .- Y ) } ) ( LSSum ` U ) ( N ` { ( X .- Z ) } ) ) ) ) = ( ( ( J ` { G } ) ( LSSum ` C ) ( J ` { E } ) ) i^i ( ( J ` { ( F R G ) } ) ( LSSum ` C ) ( J ` { ( F R E ) } ) ) ) ) |
72 |
46 71
|
eqtrd |
|- ( ph -> ( M ` ( ( ( N ` { Y } ) ( LSSum ` U ) ( N ` { Z } ) ) i^i ( ( N ` { ( X .- Y ) } ) ( LSSum ` U ) ( N ` { ( X .- Z ) } ) ) ) ) = ( ( ( J ` { G } ) ( LSSum ` C ) ( J ` { E } ) ) i^i ( ( J ` { ( F R G ) } ) ( LSSum ` C ) ( J ` { ( F R E ) } ) ) ) ) |
73 |
6 7 8 32 9 49 35 20 21 18 19
|
baerlem3 |
|- ( ph -> ( N ` { ( Y .- Z ) } ) = ( ( ( N ` { Y } ) ( LSSum ` U ) ( N ` { Z } ) ) i^i ( ( N ` { ( X .- Y ) } ) ( LSSum ` U ) ( N ` { ( X .- Z ) } ) ) ) ) |
74 |
73
|
fveq2d |
|- ( ph -> ( M ` ( N ` { ( Y .- Z ) } ) ) = ( M ` ( ( ( N ` { Y } ) ( LSSum ` U ) ( N ` { Z } ) ) i^i ( ( N ` { ( X .- Y ) } ) ( LSSum ` U ) ( N ` { ( X .- Z ) } ) ) ) ) ) |
75 |
|
eqid |
|- ( 0g ` C ) = ( 0g ` C ) |
76 |
3 10 14
|
lcdlvec |
|- ( ph -> C e. LVec ) |
77 |
3 4 5 6 9 10 11 13 14 15 16 35 26 53 56 29 60 63 20
|
mapdindp |
|- ( ph -> -. F e. ( J ` { G , E } ) ) |
78 |
3 4 5 6 9 10 11 13 14 53 56 26 29 60 63 21
|
mapdncol |
|- ( ph -> ( J ` { G } ) =/= ( J ` { E } ) ) |
79 |
3 4 5 6 9 10 11 13 14 53 56 8 75 18
|
mapdn0 |
|- ( ph -> G e. ( D \ { ( 0g ` C ) } ) ) |
80 |
3 4 5 6 9 10 11 13 14 60 63 8 75 19
|
mapdn0 |
|- ( ph -> E e. ( D \ { ( 0g ` C ) } ) ) |
81 |
11 12 75 47 13 76 15 77 78 79 80
|
baerlem3 |
|- ( ph -> ( J ` { ( G R E ) } ) = ( ( ( J ` { G } ) ( LSSum ` C ) ( J ` { E } ) ) i^i ( ( J ` { ( F R G ) } ) ( LSSum ` C ) ( J ` { ( F R E ) } ) ) ) ) |
82 |
72 74 81
|
3eqtr4d |
|- ( ph -> ( M ` ( N ` { ( Y .- Z ) } ) ) = ( J ` { ( G R E ) } ) ) |