| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mapdh.q |
|- Q = ( 0g ` C ) |
| 2 |
|
mapdh.i |
|- I = ( x e. _V |-> if ( ( 2nd ` x ) = .0. , Q , ( iota_ h e. D ( ( M ` ( N ` { ( 2nd ` x ) } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( ( 1st ` ( 1st ` x ) ) .- ( 2nd ` x ) ) } ) ) = ( J ` { ( ( 2nd ` ( 1st ` x ) ) R h ) } ) ) ) ) ) |
| 3 |
|
mapdh.h |
|- H = ( LHyp ` K ) |
| 4 |
|
mapdh.m |
|- M = ( ( mapd ` K ) ` W ) |
| 5 |
|
mapdh.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 6 |
|
mapdh.v |
|- V = ( Base ` U ) |
| 7 |
|
mapdh.s |
|- .- = ( -g ` U ) |
| 8 |
|
mapdhc.o |
|- .0. = ( 0g ` U ) |
| 9 |
|
mapdh.n |
|- N = ( LSpan ` U ) |
| 10 |
|
mapdh.c |
|- C = ( ( LCDual ` K ) ` W ) |
| 11 |
|
mapdh.d |
|- D = ( Base ` C ) |
| 12 |
|
mapdh.r |
|- R = ( -g ` C ) |
| 13 |
|
mapdh.j |
|- J = ( LSpan ` C ) |
| 14 |
|
mapdh.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 15 |
|
mapdhc.f |
|- ( ph -> F e. D ) |
| 16 |
|
mapdh.mn |
|- ( ph -> ( M ` ( N ` { X } ) ) = ( J ` { F } ) ) |
| 17 |
|
mapdhcl.x |
|- ( ph -> X e. ( V \ { .0. } ) ) |
| 18 |
|
mapdhe4.y |
|- ( ph -> Y e. ( V \ { .0. } ) ) |
| 19 |
|
mapdhe.z |
|- ( ph -> Z e. ( V \ { .0. } ) ) |
| 20 |
|
mapdh.xn |
|- ( ph -> -. X e. ( N ` { Y , Z } ) ) |
| 21 |
|
mapdh.yz |
|- ( ph -> ( N ` { Y } ) =/= ( N ` { Z } ) ) |
| 22 |
|
mapdh.eg |
|- ( ph -> ( I ` <. X , F , Y >. ) = G ) |
| 23 |
|
mapdh.ee |
|- ( ph -> ( I ` <. X , F , Z >. ) = E ) |
| 24 |
|
eqid |
|- ( LSubSp ` U ) = ( LSubSp ` U ) |
| 25 |
3 5 14
|
dvhlmod |
|- ( ph -> U e. LMod ) |
| 26 |
18
|
eldifad |
|- ( ph -> Y e. V ) |
| 27 |
6 24 9
|
lspsncl |
|- ( ( U e. LMod /\ Y e. V ) -> ( N ` { Y } ) e. ( LSubSp ` U ) ) |
| 28 |
25 26 27
|
syl2anc |
|- ( ph -> ( N ` { Y } ) e. ( LSubSp ` U ) ) |
| 29 |
19
|
eldifad |
|- ( ph -> Z e. V ) |
| 30 |
6 24 9
|
lspsncl |
|- ( ( U e. LMod /\ Z e. V ) -> ( N ` { Z } ) e. ( LSubSp ` U ) ) |
| 31 |
25 29 30
|
syl2anc |
|- ( ph -> ( N ` { Z } ) e. ( LSubSp ` U ) ) |
| 32 |
|
eqid |
|- ( LSSum ` U ) = ( LSSum ` U ) |
| 33 |
24 32
|
lsmcl |
|- ( ( U e. LMod /\ ( N ` { Y } ) e. ( LSubSp ` U ) /\ ( N ` { Z } ) e. ( LSubSp ` U ) ) -> ( ( N ` { Y } ) ( LSSum ` U ) ( N ` { Z } ) ) e. ( LSubSp ` U ) ) |
| 34 |
25 28 31 33
|
syl3anc |
|- ( ph -> ( ( N ` { Y } ) ( LSSum ` U ) ( N ` { Z } ) ) e. ( LSubSp ` U ) ) |
| 35 |
17
|
eldifad |
|- ( ph -> X e. V ) |
| 36 |
6 7
|
lmodvsubcl |
|- ( ( U e. LMod /\ X e. V /\ Y e. V ) -> ( X .- Y ) e. V ) |
| 37 |
25 35 26 36
|
syl3anc |
|- ( ph -> ( X .- Y ) e. V ) |
| 38 |
6 24 9
|
lspsncl |
|- ( ( U e. LMod /\ ( X .- Y ) e. V ) -> ( N ` { ( X .- Y ) } ) e. ( LSubSp ` U ) ) |
| 39 |
25 37 38
|
syl2anc |
|- ( ph -> ( N ` { ( X .- Y ) } ) e. ( LSubSp ` U ) ) |
| 40 |
6 7
|
lmodvsubcl |
|- ( ( U e. LMod /\ X e. V /\ Z e. V ) -> ( X .- Z ) e. V ) |
| 41 |
25 35 29 40
|
syl3anc |
|- ( ph -> ( X .- Z ) e. V ) |
| 42 |
6 24 9
|
lspsncl |
|- ( ( U e. LMod /\ ( X .- Z ) e. V ) -> ( N ` { ( X .- Z ) } ) e. ( LSubSp ` U ) ) |
| 43 |
25 41 42
|
syl2anc |
|- ( ph -> ( N ` { ( X .- Z ) } ) e. ( LSubSp ` U ) ) |
| 44 |
24 32
|
lsmcl |
|- ( ( U e. LMod /\ ( N ` { ( X .- Y ) } ) e. ( LSubSp ` U ) /\ ( N ` { ( X .- Z ) } ) e. ( LSubSp ` U ) ) -> ( ( N ` { ( X .- Y ) } ) ( LSSum ` U ) ( N ` { ( X .- Z ) } ) ) e. ( LSubSp ` U ) ) |
| 45 |
25 39 43 44
|
syl3anc |
|- ( ph -> ( ( N ` { ( X .- Y ) } ) ( LSSum ` U ) ( N ` { ( X .- Z ) } ) ) e. ( LSubSp ` U ) ) |
| 46 |
3 4 5 24 14 34 45
|
mapdin |
|- ( ph -> ( M ` ( ( ( N ` { Y } ) ( LSSum ` U ) ( N ` { Z } ) ) i^i ( ( N ` { ( X .- Y ) } ) ( LSSum ` U ) ( N ` { ( X .- Z ) } ) ) ) ) = ( ( M ` ( ( N ` { Y } ) ( LSSum ` U ) ( N ` { Z } ) ) ) i^i ( M ` ( ( N ` { ( X .- Y ) } ) ( LSSum ` U ) ( N ` { ( X .- Z ) } ) ) ) ) ) |
| 47 |
|
eqid |
|- ( LSSum ` C ) = ( LSSum ` C ) |
| 48 |
3 4 5 24 32 10 47 14 28 31
|
mapdlsm |
|- ( ph -> ( M ` ( ( N ` { Y } ) ( LSSum ` U ) ( N ` { Z } ) ) ) = ( ( M ` ( N ` { Y } ) ) ( LSSum ` C ) ( M ` ( N ` { Z } ) ) ) ) |
| 49 |
3 5 14
|
dvhlvec |
|- ( ph -> U e. LVec ) |
| 50 |
6 8 9 49 26 19 35 21 20
|
lspindp2 |
|- ( ph -> ( ( N ` { X } ) =/= ( N ` { Y } ) /\ -. Z e. ( N ` { X , Y } ) ) ) |
| 51 |
50
|
simpld |
|- ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) ) |
| 52 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 26 51
|
mapdhcl |
|- ( ph -> ( I ` <. X , F , Y >. ) e. D ) |
| 53 |
22 52
|
eqeltrrd |
|- ( ph -> G e. D ) |
| 54 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 53 51
|
mapdheq |
|- ( ph -> ( ( I ` <. X , F , Y >. ) = G <-> ( ( M ` ( N ` { Y } ) ) = ( J ` { G } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( F R G ) } ) ) ) ) |
| 55 |
22 54
|
mpbid |
|- ( ph -> ( ( M ` ( N ` { Y } ) ) = ( J ` { G } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( F R G ) } ) ) ) |
| 56 |
55
|
simpld |
|- ( ph -> ( M ` ( N ` { Y } ) ) = ( J ` { G } ) ) |
| 57 |
6 8 9 49 18 29 35 21 20
|
lspindp1 |
|- ( ph -> ( ( N ` { X } ) =/= ( N ` { Z } ) /\ -. Y e. ( N ` { X , Z } ) ) ) |
| 58 |
57
|
simpld |
|- ( ph -> ( N ` { X } ) =/= ( N ` { Z } ) ) |
| 59 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 29 58
|
mapdhcl |
|- ( ph -> ( I ` <. X , F , Z >. ) e. D ) |
| 60 |
23 59
|
eqeltrrd |
|- ( ph -> E e. D ) |
| 61 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 19 60 58
|
mapdheq |
|- ( ph -> ( ( I ` <. X , F , Z >. ) = E <-> ( ( M ` ( N ` { Z } ) ) = ( J ` { E } ) /\ ( M ` ( N ` { ( X .- Z ) } ) ) = ( J ` { ( F R E ) } ) ) ) ) |
| 62 |
23 61
|
mpbid |
|- ( ph -> ( ( M ` ( N ` { Z } ) ) = ( J ` { E } ) /\ ( M ` ( N ` { ( X .- Z ) } ) ) = ( J ` { ( F R E ) } ) ) ) |
| 63 |
62
|
simpld |
|- ( ph -> ( M ` ( N ` { Z } ) ) = ( J ` { E } ) ) |
| 64 |
56 63
|
oveq12d |
|- ( ph -> ( ( M ` ( N ` { Y } ) ) ( LSSum ` C ) ( M ` ( N ` { Z } ) ) ) = ( ( J ` { G } ) ( LSSum ` C ) ( J ` { E } ) ) ) |
| 65 |
48 64
|
eqtrd |
|- ( ph -> ( M ` ( ( N ` { Y } ) ( LSSum ` U ) ( N ` { Z } ) ) ) = ( ( J ` { G } ) ( LSSum ` C ) ( J ` { E } ) ) ) |
| 66 |
3 4 5 24 32 10 47 14 39 43
|
mapdlsm |
|- ( ph -> ( M ` ( ( N ` { ( X .- Y ) } ) ( LSSum ` U ) ( N ` { ( X .- Z ) } ) ) ) = ( ( M ` ( N ` { ( X .- Y ) } ) ) ( LSSum ` C ) ( M ` ( N ` { ( X .- Z ) } ) ) ) ) |
| 67 |
55
|
simprd |
|- ( ph -> ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( F R G ) } ) ) |
| 68 |
62
|
simprd |
|- ( ph -> ( M ` ( N ` { ( X .- Z ) } ) ) = ( J ` { ( F R E ) } ) ) |
| 69 |
67 68
|
oveq12d |
|- ( ph -> ( ( M ` ( N ` { ( X .- Y ) } ) ) ( LSSum ` C ) ( M ` ( N ` { ( X .- Z ) } ) ) ) = ( ( J ` { ( F R G ) } ) ( LSSum ` C ) ( J ` { ( F R E ) } ) ) ) |
| 70 |
66 69
|
eqtrd |
|- ( ph -> ( M ` ( ( N ` { ( X .- Y ) } ) ( LSSum ` U ) ( N ` { ( X .- Z ) } ) ) ) = ( ( J ` { ( F R G ) } ) ( LSSum ` C ) ( J ` { ( F R E ) } ) ) ) |
| 71 |
65 70
|
ineq12d |
|- ( ph -> ( ( M ` ( ( N ` { Y } ) ( LSSum ` U ) ( N ` { Z } ) ) ) i^i ( M ` ( ( N ` { ( X .- Y ) } ) ( LSSum ` U ) ( N ` { ( X .- Z ) } ) ) ) ) = ( ( ( J ` { G } ) ( LSSum ` C ) ( J ` { E } ) ) i^i ( ( J ` { ( F R G ) } ) ( LSSum ` C ) ( J ` { ( F R E ) } ) ) ) ) |
| 72 |
46 71
|
eqtrd |
|- ( ph -> ( M ` ( ( ( N ` { Y } ) ( LSSum ` U ) ( N ` { Z } ) ) i^i ( ( N ` { ( X .- Y ) } ) ( LSSum ` U ) ( N ` { ( X .- Z ) } ) ) ) ) = ( ( ( J ` { G } ) ( LSSum ` C ) ( J ` { E } ) ) i^i ( ( J ` { ( F R G ) } ) ( LSSum ` C ) ( J ` { ( F R E ) } ) ) ) ) |
| 73 |
6 7 8 32 9 49 35 20 21 18 19
|
baerlem3 |
|- ( ph -> ( N ` { ( Y .- Z ) } ) = ( ( ( N ` { Y } ) ( LSSum ` U ) ( N ` { Z } ) ) i^i ( ( N ` { ( X .- Y ) } ) ( LSSum ` U ) ( N ` { ( X .- Z ) } ) ) ) ) |
| 74 |
73
|
fveq2d |
|- ( ph -> ( M ` ( N ` { ( Y .- Z ) } ) ) = ( M ` ( ( ( N ` { Y } ) ( LSSum ` U ) ( N ` { Z } ) ) i^i ( ( N ` { ( X .- Y ) } ) ( LSSum ` U ) ( N ` { ( X .- Z ) } ) ) ) ) ) |
| 75 |
|
eqid |
|- ( 0g ` C ) = ( 0g ` C ) |
| 76 |
3 10 14
|
lcdlvec |
|- ( ph -> C e. LVec ) |
| 77 |
3 4 5 6 9 10 11 13 14 15 16 35 26 53 56 29 60 63 20
|
mapdindp |
|- ( ph -> -. F e. ( J ` { G , E } ) ) |
| 78 |
3 4 5 6 9 10 11 13 14 53 56 26 29 60 63 21
|
mapdncol |
|- ( ph -> ( J ` { G } ) =/= ( J ` { E } ) ) |
| 79 |
3 4 5 6 9 10 11 13 14 53 56 8 75 18
|
mapdn0 |
|- ( ph -> G e. ( D \ { ( 0g ` C ) } ) ) |
| 80 |
3 4 5 6 9 10 11 13 14 60 63 8 75 19
|
mapdn0 |
|- ( ph -> E e. ( D \ { ( 0g ` C ) } ) ) |
| 81 |
11 12 75 47 13 76 15 77 78 79 80
|
baerlem3 |
|- ( ph -> ( J ` { ( G R E ) } ) = ( ( ( J ` { G } ) ( LSSum ` C ) ( J ` { E } ) ) i^i ( ( J ` { ( F R G ) } ) ( LSSum ` C ) ( J ` { ( F R E ) } ) ) ) ) |
| 82 |
72 74 81
|
3eqtr4d |
|- ( ph -> ( M ` ( N ` { ( Y .- Z ) } ) ) = ( J ` { ( G R E ) } ) ) |