Description: Part of Part (8) in Baer p. 48. (Contributed by NM, 5-May-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mapdh8a.h | |- H = ( LHyp ` K ) |
|
mapdh8a.u | |- U = ( ( DVecH ` K ) ` W ) |
||
mapdh8a.v | |- V = ( Base ` U ) |
||
mapdh8a.s | |- .- = ( -g ` U ) |
||
mapdh8a.o | |- .0. = ( 0g ` U ) |
||
mapdh8a.n | |- N = ( LSpan ` U ) |
||
mapdh8a.c | |- C = ( ( LCDual ` K ) ` W ) |
||
mapdh8a.d | |- D = ( Base ` C ) |
||
mapdh8a.r | |- R = ( -g ` C ) |
||
mapdh8a.q | |- Q = ( 0g ` C ) |
||
mapdh8a.j | |- J = ( LSpan ` C ) |
||
mapdh8a.m | |- M = ( ( mapd ` K ) ` W ) |
||
mapdh8a.i | |- I = ( x e. _V |-> if ( ( 2nd ` x ) = .0. , Q , ( iota_ h e. D ( ( M ` ( N ` { ( 2nd ` x ) } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( ( 1st ` ( 1st ` x ) ) .- ( 2nd ` x ) ) } ) ) = ( J ` { ( ( 2nd ` ( 1st ` x ) ) R h ) } ) ) ) ) ) |
||
mapdh8a.k | |- ( ph -> ( K e. HL /\ W e. H ) ) |
||
mapdh8a.f | |- ( ph -> F e. D ) |
||
mapdh8a.mn | |- ( ph -> ( M ` ( N ` { X } ) ) = ( J ` { F } ) ) |
||
mapdh8a.a | |- ( ph -> ( I ` <. X , F , Y >. ) = G ) |
||
mapdh8a.x | |- ( ph -> X e. ( V \ { .0. } ) ) |
||
mapdh8a.y | |- ( ph -> Y e. ( V \ { .0. } ) ) |
||
mapdh8a.yz | |- ( ph -> ( N ` { Y } ) =/= ( N ` { T } ) ) |
||
mapdh8a.xt | |- ( ph -> T e. ( V \ { .0. } ) ) |
||
mapdh8a.xn | |- ( ph -> -. X e. ( N ` { Y , T } ) ) |
||
Assertion | mapdh8a | |- ( ph -> ( I ` <. Y , G , T >. ) = ( I ` <. X , F , T >. ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapdh8a.h | |- H = ( LHyp ` K ) |
|
2 | mapdh8a.u | |- U = ( ( DVecH ` K ) ` W ) |
|
3 | mapdh8a.v | |- V = ( Base ` U ) |
|
4 | mapdh8a.s | |- .- = ( -g ` U ) |
|
5 | mapdh8a.o | |- .0. = ( 0g ` U ) |
|
6 | mapdh8a.n | |- N = ( LSpan ` U ) |
|
7 | mapdh8a.c | |- C = ( ( LCDual ` K ) ` W ) |
|
8 | mapdh8a.d | |- D = ( Base ` C ) |
|
9 | mapdh8a.r | |- R = ( -g ` C ) |
|
10 | mapdh8a.q | |- Q = ( 0g ` C ) |
|
11 | mapdh8a.j | |- J = ( LSpan ` C ) |
|
12 | mapdh8a.m | |- M = ( ( mapd ` K ) ` W ) |
|
13 | mapdh8a.i | |- I = ( x e. _V |-> if ( ( 2nd ` x ) = .0. , Q , ( iota_ h e. D ( ( M ` ( N ` { ( 2nd ` x ) } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( ( 1st ` ( 1st ` x ) ) .- ( 2nd ` x ) ) } ) ) = ( J ` { ( ( 2nd ` ( 1st ` x ) ) R h ) } ) ) ) ) ) |
|
14 | mapdh8a.k | |- ( ph -> ( K e. HL /\ W e. H ) ) |
|
15 | mapdh8a.f | |- ( ph -> F e. D ) |
|
16 | mapdh8a.mn | |- ( ph -> ( M ` ( N ` { X } ) ) = ( J ` { F } ) ) |
|
17 | mapdh8a.a | |- ( ph -> ( I ` <. X , F , Y >. ) = G ) |
|
18 | mapdh8a.x | |- ( ph -> X e. ( V \ { .0. } ) ) |
|
19 | mapdh8a.y | |- ( ph -> Y e. ( V \ { .0. } ) ) |
|
20 | mapdh8a.yz | |- ( ph -> ( N ` { Y } ) =/= ( N ` { T } ) ) |
|
21 | mapdh8a.xt | |- ( ph -> T e. ( V \ { .0. } ) ) |
|
22 | mapdh8a.xn | |- ( ph -> -. X e. ( N ` { Y , T } ) ) |
|
23 | eqidd | |- ( ph -> ( I ` <. X , F , T >. ) = ( I ` <. X , F , T >. ) ) |
|
24 | 10 13 1 12 2 3 4 5 6 7 8 9 11 14 15 16 18 19 21 22 20 17 23 | mapdheq4 | |- ( ph -> ( I ` <. Y , G , T >. ) = ( I ` <. X , F , T >. ) ) |