Metamath Proof Explorer


Theorem mapdh8aa

Description: Part of Part (8) in Baer p. 48. (Contributed by NM, 12-May-2015)

Ref Expression
Hypotheses mapdh8a.h
|- H = ( LHyp ` K )
mapdh8a.u
|- U = ( ( DVecH ` K ) ` W )
mapdh8a.v
|- V = ( Base ` U )
mapdh8a.s
|- .- = ( -g ` U )
mapdh8a.o
|- .0. = ( 0g ` U )
mapdh8a.n
|- N = ( LSpan ` U )
mapdh8a.c
|- C = ( ( LCDual ` K ) ` W )
mapdh8a.d
|- D = ( Base ` C )
mapdh8a.r
|- R = ( -g ` C )
mapdh8a.q
|- Q = ( 0g ` C )
mapdh8a.j
|- J = ( LSpan ` C )
mapdh8a.m
|- M = ( ( mapd ` K ) ` W )
mapdh8a.i
|- I = ( x e. _V |-> if ( ( 2nd ` x ) = .0. , Q , ( iota_ h e. D ( ( M ` ( N ` { ( 2nd ` x ) } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( ( 1st ` ( 1st ` x ) ) .- ( 2nd ` x ) ) } ) ) = ( J ` { ( ( 2nd ` ( 1st ` x ) ) R h ) } ) ) ) ) )
mapdh8a.k
|- ( ph -> ( K e. HL /\ W e. H ) )
mapdh8aa.f
|- ( ph -> F e. D )
mapdh8aa.mn
|- ( ph -> ( M ` ( N ` { X } ) ) = ( J ` { F } ) )
mapdh8aa.eg
|- ( ph -> ( I ` <. X , F , Y >. ) = G )
mapdh8aa.ee
|- ( ph -> ( I ` <. X , F , Z >. ) = E )
mapdh8aa.x
|- ( ph -> X e. ( V \ { .0. } ) )
mapdh8aa.y
|- ( ph -> Y e. ( V \ { .0. } ) )
mapdh8aa.z
|- ( ph -> Z e. ( V \ { .0. } ) )
mapdh8aa.zt
|- ( ph -> ( N ` { Z } ) =/= ( N ` { T } ) )
mapdh8aa.t
|- ( ph -> T e. ( V \ { .0. } ) )
mapdh8aa.yn
|- ( ph -> -. Y e. ( N ` { Z , T } ) )
mapdh8aa.xn
|- ( ph -> -. X e. ( N ` { Y , Z } ) )
Assertion mapdh8aa
|- ( ph -> ( I ` <. Y , G , T >. ) = ( I ` <. Z , E , T >. ) )

Proof

Step Hyp Ref Expression
1 mapdh8a.h
 |-  H = ( LHyp ` K )
2 mapdh8a.u
 |-  U = ( ( DVecH ` K ) ` W )
3 mapdh8a.v
 |-  V = ( Base ` U )
4 mapdh8a.s
 |-  .- = ( -g ` U )
5 mapdh8a.o
 |-  .0. = ( 0g ` U )
6 mapdh8a.n
 |-  N = ( LSpan ` U )
7 mapdh8a.c
 |-  C = ( ( LCDual ` K ) ` W )
8 mapdh8a.d
 |-  D = ( Base ` C )
9 mapdh8a.r
 |-  R = ( -g ` C )
10 mapdh8a.q
 |-  Q = ( 0g ` C )
11 mapdh8a.j
 |-  J = ( LSpan ` C )
12 mapdh8a.m
 |-  M = ( ( mapd ` K ) ` W )
13 mapdh8a.i
 |-  I = ( x e. _V |-> if ( ( 2nd ` x ) = .0. , Q , ( iota_ h e. D ( ( M ` ( N ` { ( 2nd ` x ) } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( ( 1st ` ( 1st ` x ) ) .- ( 2nd ` x ) ) } ) ) = ( J ` { ( ( 2nd ` ( 1st ` x ) ) R h ) } ) ) ) ) )
14 mapdh8a.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
15 mapdh8aa.f
 |-  ( ph -> F e. D )
16 mapdh8aa.mn
 |-  ( ph -> ( M ` ( N ` { X } ) ) = ( J ` { F } ) )
17 mapdh8aa.eg
 |-  ( ph -> ( I ` <. X , F , Y >. ) = G )
18 mapdh8aa.ee
 |-  ( ph -> ( I ` <. X , F , Z >. ) = E )
19 mapdh8aa.x
 |-  ( ph -> X e. ( V \ { .0. } ) )
20 mapdh8aa.y
 |-  ( ph -> Y e. ( V \ { .0. } ) )
21 mapdh8aa.z
 |-  ( ph -> Z e. ( V \ { .0. } ) )
22 mapdh8aa.zt
 |-  ( ph -> ( N ` { Z } ) =/= ( N ` { T } ) )
23 mapdh8aa.t
 |-  ( ph -> T e. ( V \ { .0. } ) )
24 mapdh8aa.yn
 |-  ( ph -> -. Y e. ( N ` { Z , T } ) )
25 mapdh8aa.xn
 |-  ( ph -> -. X e. ( N ` { Y , Z } ) )
26 20 eldifad
 |-  ( ph -> Y e. V )
27 1 2 14 dvhlvec
 |-  ( ph -> U e. LVec )
28 19 eldifad
 |-  ( ph -> X e. V )
29 21 eldifad
 |-  ( ph -> Z e. V )
30 3 6 27 28 26 29 25 lspindpi
 |-  ( ph -> ( ( N ` { X } ) =/= ( N ` { Y } ) /\ ( N ` { X } ) =/= ( N ` { Z } ) ) )
31 30 simpld
 |-  ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) )
32 10 13 1 12 2 3 4 5 6 7 8 9 11 14 15 16 19 26 31 mapdhcl
 |-  ( ph -> ( I ` <. X , F , Y >. ) e. D )
33 17 32 eqeltrrd
 |-  ( ph -> G e. D )
34 10 13 1 12 2 3 4 5 6 7 8 9 11 14 15 16 19 20 33 31 mapdheq
 |-  ( ph -> ( ( I ` <. X , F , Y >. ) = G <-> ( ( M ` ( N ` { Y } ) ) = ( J ` { G } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( F R G ) } ) ) ) )
35 17 34 mpbid
 |-  ( ph -> ( ( M ` ( N ` { Y } ) ) = ( J ` { G } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( F R G ) } ) ) )
36 35 simpld
 |-  ( ph -> ( M ` ( N ` { Y } ) ) = ( J ` { G } ) )
37 23 eldifad
 |-  ( ph -> T e. V )
38 3 6 27 26 29 37 24 lspindpi
 |-  ( ph -> ( ( N ` { Y } ) =/= ( N ` { Z } ) /\ ( N ` { Y } ) =/= ( N ` { T } ) ) )
39 38 simpld
 |-  ( ph -> ( N ` { Y } ) =/= ( N ` { Z } ) )
40 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 39 25 19 20 21 mapdh75d
 |-  ( ph -> ( I ` <. Y , G , Z >. ) = E )
41 1 2 3 4 5 6 7 8 9 10 11 12 13 14 33 36 40 20 21 22 23 24 mapdh8a
 |-  ( ph -> ( I ` <. Z , E , T >. ) = ( I ` <. Y , G , T >. ) )
42 41 eqcomd
 |-  ( ph -> ( I ` <. Y , G , T >. ) = ( I ` <. Z , E , T >. ) )