Metamath Proof Explorer


Theorem mapdh8ab

Description: Part of Part (8) in Baer p. 48. (Contributed by NM, 13-May-2015)

Ref Expression
Hypotheses mapdh8a.h
|- H = ( LHyp ` K )
mapdh8a.u
|- U = ( ( DVecH ` K ) ` W )
mapdh8a.v
|- V = ( Base ` U )
mapdh8a.s
|- .- = ( -g ` U )
mapdh8a.o
|- .0. = ( 0g ` U )
mapdh8a.n
|- N = ( LSpan ` U )
mapdh8a.c
|- C = ( ( LCDual ` K ) ` W )
mapdh8a.d
|- D = ( Base ` C )
mapdh8a.r
|- R = ( -g ` C )
mapdh8a.q
|- Q = ( 0g ` C )
mapdh8a.j
|- J = ( LSpan ` C )
mapdh8a.m
|- M = ( ( mapd ` K ) ` W )
mapdh8a.i
|- I = ( x e. _V |-> if ( ( 2nd ` x ) = .0. , Q , ( iota_ h e. D ( ( M ` ( N ` { ( 2nd ` x ) } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( ( 1st ` ( 1st ` x ) ) .- ( 2nd ` x ) ) } ) ) = ( J ` { ( ( 2nd ` ( 1st ` x ) ) R h ) } ) ) ) ) )
mapdh8a.k
|- ( ph -> ( K e. HL /\ W e. H ) )
mapdh8ab.f
|- ( ph -> F e. D )
mapdh8ab.mn
|- ( ph -> ( M ` ( N ` { X } ) ) = ( J ` { F } ) )
mapdh8ab.eg
|- ( ph -> ( I ` <. X , F , Y >. ) = G )
mapdh8ab.ee
|- ( ph -> ( I ` <. X , F , Z >. ) = E )
mapdh8ab.x
|- ( ph -> X e. ( V \ { .0. } ) )
mapdh8ab.y
|- ( ph -> Y e. ( V \ { .0. } ) )
mapdh8ab.z
|- ( ph -> Z e. ( V \ { .0. } ) )
mapdh8ab.t
|- ( ph -> T e. ( V \ { .0. } ) )
mapdh8ab.yz
|- ( ph -> ( N ` { Y } ) =/= ( N ` { Z } ) )
mapdh8ab.xn
|- ( ph -> -. X e. ( N ` { Y , Z } ) )
mapdh8ab.yn
|- ( ph -> ( N ` { X } ) = ( N ` { T } ) )
Assertion mapdh8ab
|- ( ph -> ( I ` <. Y , G , T >. ) = ( I ` <. Z , E , T >. ) )

Proof

Step Hyp Ref Expression
1 mapdh8a.h
 |-  H = ( LHyp ` K )
2 mapdh8a.u
 |-  U = ( ( DVecH ` K ) ` W )
3 mapdh8a.v
 |-  V = ( Base ` U )
4 mapdh8a.s
 |-  .- = ( -g ` U )
5 mapdh8a.o
 |-  .0. = ( 0g ` U )
6 mapdh8a.n
 |-  N = ( LSpan ` U )
7 mapdh8a.c
 |-  C = ( ( LCDual ` K ) ` W )
8 mapdh8a.d
 |-  D = ( Base ` C )
9 mapdh8a.r
 |-  R = ( -g ` C )
10 mapdh8a.q
 |-  Q = ( 0g ` C )
11 mapdh8a.j
 |-  J = ( LSpan ` C )
12 mapdh8a.m
 |-  M = ( ( mapd ` K ) ` W )
13 mapdh8a.i
 |-  I = ( x e. _V |-> if ( ( 2nd ` x ) = .0. , Q , ( iota_ h e. D ( ( M ` ( N ` { ( 2nd ` x ) } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( ( 1st ` ( 1st ` x ) ) .- ( 2nd ` x ) ) } ) ) = ( J ` { ( ( 2nd ` ( 1st ` x ) ) R h ) } ) ) ) ) )
14 mapdh8a.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
15 mapdh8ab.f
 |-  ( ph -> F e. D )
16 mapdh8ab.mn
 |-  ( ph -> ( M ` ( N ` { X } ) ) = ( J ` { F } ) )
17 mapdh8ab.eg
 |-  ( ph -> ( I ` <. X , F , Y >. ) = G )
18 mapdh8ab.ee
 |-  ( ph -> ( I ` <. X , F , Z >. ) = E )
19 mapdh8ab.x
 |-  ( ph -> X e. ( V \ { .0. } ) )
20 mapdh8ab.y
 |-  ( ph -> Y e. ( V \ { .0. } ) )
21 mapdh8ab.z
 |-  ( ph -> Z e. ( V \ { .0. } ) )
22 mapdh8ab.t
 |-  ( ph -> T e. ( V \ { .0. } ) )
23 mapdh8ab.yz
 |-  ( ph -> ( N ` { Y } ) =/= ( N ` { Z } ) )
24 mapdh8ab.xn
 |-  ( ph -> -. X e. ( N ` { Y , Z } ) )
25 mapdh8ab.yn
 |-  ( ph -> ( N ` { X } ) = ( N ` { T } ) )
26 1 2 14 dvhlvec
 |-  ( ph -> U e. LVec )
27 19 eldifad
 |-  ( ph -> X e. V )
28 20 eldifad
 |-  ( ph -> Y e. V )
29 21 eldifad
 |-  ( ph -> Z e. V )
30 3 6 26 27 28 29 24 lspindpi
 |-  ( ph -> ( ( N ` { X } ) =/= ( N ` { Y } ) /\ ( N ` { X } ) =/= ( N ` { Z } ) ) )
31 30 simprd
 |-  ( ph -> ( N ` { X } ) =/= ( N ` { Z } ) )
32 31 necomd
 |-  ( ph -> ( N ` { Z } ) =/= ( N ` { X } ) )
33 32 25 neeqtrd
 |-  ( ph -> ( N ` { Z } ) =/= ( N ` { T } ) )
34 25 sseq1d
 |-  ( ph -> ( ( N ` { X } ) C_ ( N ` { Y , Z } ) <-> ( N ` { T } ) C_ ( N ` { Y , Z } ) ) )
35 eqid
 |-  ( LSubSp ` U ) = ( LSubSp ` U )
36 1 2 14 dvhlmod
 |-  ( ph -> U e. LMod )
37 3 35 6 36 28 29 lspprcl
 |-  ( ph -> ( N ` { Y , Z } ) e. ( LSubSp ` U ) )
38 3 35 6 36 37 27 lspsnel5
 |-  ( ph -> ( X e. ( N ` { Y , Z } ) <-> ( N ` { X } ) C_ ( N ` { Y , Z } ) ) )
39 22 eldifad
 |-  ( ph -> T e. V )
40 3 35 6 36 37 39 lspsnel5
 |-  ( ph -> ( T e. ( N ` { Y , Z } ) <-> ( N ` { T } ) C_ ( N ` { Y , Z } ) ) )
41 34 38 40 3bitr4d
 |-  ( ph -> ( X e. ( N ` { Y , Z } ) <-> T e. ( N ` { Y , Z } ) ) )
42 24 41 mtbid
 |-  ( ph -> -. T e. ( N ` { Y , Z } ) )
43 26 adantr
 |-  ( ( ph /\ Y e. ( N ` { Z , T } ) ) -> U e. LVec )
44 20 adantr
 |-  ( ( ph /\ Y e. ( N ` { Z , T } ) ) -> Y e. ( V \ { .0. } ) )
45 39 adantr
 |-  ( ( ph /\ Y e. ( N ` { Z , T } ) ) -> T e. V )
46 29 adantr
 |-  ( ( ph /\ Y e. ( N ` { Z , T } ) ) -> Z e. V )
47 23 adantr
 |-  ( ( ph /\ Y e. ( N ` { Z , T } ) ) -> ( N ` { Y } ) =/= ( N ` { Z } ) )
48 simpr
 |-  ( ( ph /\ Y e. ( N ` { Z , T } ) ) -> Y e. ( N ` { Z , T } ) )
49 prcom
 |-  { Z , T } = { T , Z }
50 49 fveq2i
 |-  ( N ` { Z , T } ) = ( N ` { T , Z } )
51 48 50 eleqtrdi
 |-  ( ( ph /\ Y e. ( N ` { Z , T } ) ) -> Y e. ( N ` { T , Z } ) )
52 3 5 6 43 44 45 46 47 51 lspexch
 |-  ( ( ph /\ Y e. ( N ` { Z , T } ) ) -> T e. ( N ` { Y , Z } ) )
53 42 52 mtand
 |-  ( ph -> -. Y e. ( N ` { Z , T } ) )
54 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 33 22 53 24 mapdh8aa
 |-  ( ph -> ( I ` <. Y , G , T >. ) = ( I ` <. Z , E , T >. ) )