Step |
Hyp |
Ref |
Expression |
1 |
|
mapdh8a.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
mapdh8a.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
mapdh8a.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
4 |
|
mapdh8a.s |
⊢ − = ( -g ‘ 𝑈 ) |
5 |
|
mapdh8a.o |
⊢ 0 = ( 0g ‘ 𝑈 ) |
6 |
|
mapdh8a.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
7 |
|
mapdh8a.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
mapdh8a.d |
⊢ 𝐷 = ( Base ‘ 𝐶 ) |
9 |
|
mapdh8a.r |
⊢ 𝑅 = ( -g ‘ 𝐶 ) |
10 |
|
mapdh8a.q |
⊢ 𝑄 = ( 0g ‘ 𝐶 ) |
11 |
|
mapdh8a.j |
⊢ 𝐽 = ( LSpan ‘ 𝐶 ) |
12 |
|
mapdh8a.m |
⊢ 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) |
13 |
|
mapdh8a.i |
⊢ 𝐼 = ( 𝑥 ∈ V ↦ if ( ( 2nd ‘ 𝑥 ) = 0 , 𝑄 , ( ℩ ℎ ∈ 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 2nd ‘ 𝑥 ) } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st ‘ ( 1st ‘ 𝑥 ) ) − ( 2nd ‘ 𝑥 ) ) } ) ) = ( 𝐽 ‘ { ( ( 2nd ‘ ( 1st ‘ 𝑥 ) ) 𝑅 ℎ ) } ) ) ) ) ) |
14 |
|
mapdh8a.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
15 |
|
mapdh8ab.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐷 ) |
16 |
|
mapdh8ab.mn |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐽 ‘ { 𝐹 } ) ) |
17 |
|
mapdh8ab.eg |
⊢ ( 𝜑 → ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) = 𝐺 ) |
18 |
|
mapdh8ab.ee |
⊢ ( 𝜑 → ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑍 〉 ) = 𝐸 ) |
19 |
|
mapdh8ab.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
20 |
|
mapdh8ab.y |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝑉 ∖ { 0 } ) ) |
21 |
|
mapdh8ab.z |
⊢ ( 𝜑 → 𝑍 ∈ ( 𝑉 ∖ { 0 } ) ) |
22 |
|
mapdh8ab.t |
⊢ ( 𝜑 → 𝑇 ∈ ( 𝑉 ∖ { 0 } ) ) |
23 |
|
mapdh8ab.yz |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ≠ ( 𝑁 ‘ { 𝑍 } ) ) |
24 |
|
mapdh8ab.xn |
⊢ ( 𝜑 → ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) |
25 |
|
mapdh8ab.yn |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑇 } ) ) |
26 |
1 2 14
|
dvhlvec |
⊢ ( 𝜑 → 𝑈 ∈ LVec ) |
27 |
19
|
eldifad |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
28 |
20
|
eldifad |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
29 |
21
|
eldifad |
⊢ ( 𝜑 → 𝑍 ∈ 𝑉 ) |
30 |
3 6 26 27 28 29 24
|
lspindpi |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ∧ ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑍 } ) ) ) |
31 |
30
|
simprd |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑍 } ) ) |
32 |
31
|
necomd |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑍 } ) ≠ ( 𝑁 ‘ { 𝑋 } ) ) |
33 |
32 25
|
neeqtrd |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑍 } ) ≠ ( 𝑁 ‘ { 𝑇 } ) ) |
34 |
25
|
sseq1d |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ↔ ( 𝑁 ‘ { 𝑇 } ) ⊆ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) ) |
35 |
|
eqid |
⊢ ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 ) |
36 |
1 2 14
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
37 |
3 35 6 36 28 29
|
lspprcl |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
38 |
3 35 6 36 37 27
|
lspsnel5 |
⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ↔ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) ) |
39 |
22
|
eldifad |
⊢ ( 𝜑 → 𝑇 ∈ 𝑉 ) |
40 |
3 35 6 36 37 39
|
lspsnel5 |
⊢ ( 𝜑 → ( 𝑇 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ↔ ( 𝑁 ‘ { 𝑇 } ) ⊆ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) ) |
41 |
34 38 40
|
3bitr4d |
⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ↔ 𝑇 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) ) |
42 |
24 41
|
mtbid |
⊢ ( 𝜑 → ¬ 𝑇 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) |
43 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ ( 𝑁 ‘ { 𝑍 , 𝑇 } ) ) → 𝑈 ∈ LVec ) |
44 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ ( 𝑁 ‘ { 𝑍 , 𝑇 } ) ) → 𝑌 ∈ ( 𝑉 ∖ { 0 } ) ) |
45 |
39
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ ( 𝑁 ‘ { 𝑍 , 𝑇 } ) ) → 𝑇 ∈ 𝑉 ) |
46 |
29
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ ( 𝑁 ‘ { 𝑍 , 𝑇 } ) ) → 𝑍 ∈ 𝑉 ) |
47 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ ( 𝑁 ‘ { 𝑍 , 𝑇 } ) ) → ( 𝑁 ‘ { 𝑌 } ) ≠ ( 𝑁 ‘ { 𝑍 } ) ) |
48 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ ( 𝑁 ‘ { 𝑍 , 𝑇 } ) ) → 𝑌 ∈ ( 𝑁 ‘ { 𝑍 , 𝑇 } ) ) |
49 |
|
prcom |
⊢ { 𝑍 , 𝑇 } = { 𝑇 , 𝑍 } |
50 |
49
|
fveq2i |
⊢ ( 𝑁 ‘ { 𝑍 , 𝑇 } ) = ( 𝑁 ‘ { 𝑇 , 𝑍 } ) |
51 |
48 50
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ ( 𝑁 ‘ { 𝑍 , 𝑇 } ) ) → 𝑌 ∈ ( 𝑁 ‘ { 𝑇 , 𝑍 } ) ) |
52 |
3 5 6 43 44 45 46 47 51
|
lspexch |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ ( 𝑁 ‘ { 𝑍 , 𝑇 } ) ) → 𝑇 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) |
53 |
42 52
|
mtand |
⊢ ( 𝜑 → ¬ 𝑌 ∈ ( 𝑁 ‘ { 𝑍 , 𝑇 } ) ) |
54 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 33 22 53 24
|
mapdh8aa |
⊢ ( 𝜑 → ( 𝐼 ‘ 〈 𝑌 , 𝐺 , 𝑇 〉 ) = ( 𝐼 ‘ 〈 𝑍 , 𝐸 , 𝑇 〉 ) ) |