Metamath Proof Explorer


Theorem mapdh8ab

Description: Part of Part (8) in Baer p. 48. (Contributed by NM, 13-May-2015)

Ref Expression
Hypotheses mapdh8a.h H = LHyp K
mapdh8a.u U = DVecH K W
mapdh8a.v V = Base U
mapdh8a.s - ˙ = - U
mapdh8a.o 0 ˙ = 0 U
mapdh8a.n N = LSpan U
mapdh8a.c C = LCDual K W
mapdh8a.d D = Base C
mapdh8a.r R = - C
mapdh8a.q Q = 0 C
mapdh8a.j J = LSpan C
mapdh8a.m M = mapd K W
mapdh8a.i I = x V if 2 nd x = 0 ˙ Q ι h D | M N 2 nd x = J h M N 1 st 1 st x - ˙ 2 nd x = J 2 nd 1 st x R h
mapdh8a.k φ K HL W H
mapdh8ab.f φ F D
mapdh8ab.mn φ M N X = J F
mapdh8ab.eg φ I X F Y = G
mapdh8ab.ee φ I X F Z = E
mapdh8ab.x φ X V 0 ˙
mapdh8ab.y φ Y V 0 ˙
mapdh8ab.z φ Z V 0 ˙
mapdh8ab.t φ T V 0 ˙
mapdh8ab.yz φ N Y N Z
mapdh8ab.xn φ ¬ X N Y Z
mapdh8ab.yn φ N X = N T
Assertion mapdh8ab φ I Y G T = I Z E T

Proof

Step Hyp Ref Expression
1 mapdh8a.h H = LHyp K
2 mapdh8a.u U = DVecH K W
3 mapdh8a.v V = Base U
4 mapdh8a.s - ˙ = - U
5 mapdh8a.o 0 ˙ = 0 U
6 mapdh8a.n N = LSpan U
7 mapdh8a.c C = LCDual K W
8 mapdh8a.d D = Base C
9 mapdh8a.r R = - C
10 mapdh8a.q Q = 0 C
11 mapdh8a.j J = LSpan C
12 mapdh8a.m M = mapd K W
13 mapdh8a.i I = x V if 2 nd x = 0 ˙ Q ι h D | M N 2 nd x = J h M N 1 st 1 st x - ˙ 2 nd x = J 2 nd 1 st x R h
14 mapdh8a.k φ K HL W H
15 mapdh8ab.f φ F D
16 mapdh8ab.mn φ M N X = J F
17 mapdh8ab.eg φ I X F Y = G
18 mapdh8ab.ee φ I X F Z = E
19 mapdh8ab.x φ X V 0 ˙
20 mapdh8ab.y φ Y V 0 ˙
21 mapdh8ab.z φ Z V 0 ˙
22 mapdh8ab.t φ T V 0 ˙
23 mapdh8ab.yz φ N Y N Z
24 mapdh8ab.xn φ ¬ X N Y Z
25 mapdh8ab.yn φ N X = N T
26 1 2 14 dvhlvec φ U LVec
27 19 eldifad φ X V
28 20 eldifad φ Y V
29 21 eldifad φ Z V
30 3 6 26 27 28 29 24 lspindpi φ N X N Y N X N Z
31 30 simprd φ N X N Z
32 31 necomd φ N Z N X
33 32 25 neeqtrd φ N Z N T
34 25 sseq1d φ N X N Y Z N T N Y Z
35 eqid LSubSp U = LSubSp U
36 1 2 14 dvhlmod φ U LMod
37 3 35 6 36 28 29 lspprcl φ N Y Z LSubSp U
38 3 35 6 36 37 27 lspsnel5 φ X N Y Z N X N Y Z
39 22 eldifad φ T V
40 3 35 6 36 37 39 lspsnel5 φ T N Y Z N T N Y Z
41 34 38 40 3bitr4d φ X N Y Z T N Y Z
42 24 41 mtbid φ ¬ T N Y Z
43 26 adantr φ Y N Z T U LVec
44 20 adantr φ Y N Z T Y V 0 ˙
45 39 adantr φ Y N Z T T V
46 29 adantr φ Y N Z T Z V
47 23 adantr φ Y N Z T N Y N Z
48 simpr φ Y N Z T Y N Z T
49 prcom Z T = T Z
50 49 fveq2i N Z T = N T Z
51 48 50 eleqtrdi φ Y N Z T Y N T Z
52 3 5 6 43 44 45 46 47 51 lspexch φ Y N Z T T N Y Z
53 42 52 mtand φ ¬ Y N Z T
54 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 33 22 53 24 mapdh8aa φ I Y G T = I Z E T