Metamath Proof Explorer


Theorem mapdh8ac

Description: Part of Part (8) in Baer p. 48. (Contributed by NM, 13-May-2015)

Ref Expression
Hypotheses mapdh8a.h H = LHyp K
mapdh8a.u U = DVecH K W
mapdh8a.v V = Base U
mapdh8a.s - ˙ = - U
mapdh8a.o 0 ˙ = 0 U
mapdh8a.n N = LSpan U
mapdh8a.c C = LCDual K W
mapdh8a.d D = Base C
mapdh8a.r R = - C
mapdh8a.q Q = 0 C
mapdh8a.j J = LSpan C
mapdh8a.m M = mapd K W
mapdh8a.i I = x V if 2 nd x = 0 ˙ Q ι h D | M N 2 nd x = J h M N 1 st 1 st x - ˙ 2 nd x = J 2 nd 1 st x R h
mapdh8a.k φ K HL W H
mapdh8ac.f φ F D
mapdh8ac.mn φ M N X = J F
mapdh8ac.eg φ I X F Y = G
mapdh8ac.ee φ I X F Z = E
mapdh8ac.x φ X V 0 ˙
mapdh8ac.y φ Y V 0 ˙
mapdh8ac.z φ Z V 0 ˙
mapdh8ac.t φ T V 0 ˙
mapdh8ac.yn φ N X = N T
mapdh8ac.ew φ I X F w = B
mapdh8ac.w φ w V 0 ˙
mapdh8ac.yw φ N Y N w
mapdh8ac.xy φ ¬ X N Y w
mapdh8ac.wz φ N w N Z
mapdh8ac.xz φ ¬ X N w Z
Assertion mapdh8ac φ I Y G T = I Z E T

Proof

Step Hyp Ref Expression
1 mapdh8a.h H = LHyp K
2 mapdh8a.u U = DVecH K W
3 mapdh8a.v V = Base U
4 mapdh8a.s - ˙ = - U
5 mapdh8a.o 0 ˙ = 0 U
6 mapdh8a.n N = LSpan U
7 mapdh8a.c C = LCDual K W
8 mapdh8a.d D = Base C
9 mapdh8a.r R = - C
10 mapdh8a.q Q = 0 C
11 mapdh8a.j J = LSpan C
12 mapdh8a.m M = mapd K W
13 mapdh8a.i I = x V if 2 nd x = 0 ˙ Q ι h D | M N 2 nd x = J h M N 1 st 1 st x - ˙ 2 nd x = J 2 nd 1 st x R h
14 mapdh8a.k φ K HL W H
15 mapdh8ac.f φ F D
16 mapdh8ac.mn φ M N X = J F
17 mapdh8ac.eg φ I X F Y = G
18 mapdh8ac.ee φ I X F Z = E
19 mapdh8ac.x φ X V 0 ˙
20 mapdh8ac.y φ Y V 0 ˙
21 mapdh8ac.z φ Z V 0 ˙
22 mapdh8ac.t φ T V 0 ˙
23 mapdh8ac.yn φ N X = N T
24 mapdh8ac.ew φ I X F w = B
25 mapdh8ac.w φ w V 0 ˙
26 mapdh8ac.yw φ N Y N w
27 mapdh8ac.xy φ ¬ X N Y w
28 mapdh8ac.wz φ N w N Z
29 mapdh8ac.xz φ ¬ X N w Z
30 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 24 19 20 25 22 26 27 23 mapdh8ab φ I Y G T = I w B T
31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 24 18 19 25 21 22 28 29 23 mapdh8ab φ I w B T = I Z E T
32 30 31 eqtrd φ I Y G T = I Z E T