Metamath Proof Explorer


Theorem mapdh8aa

Description: Part of Part (8) in Baer p. 48. (Contributed by NM, 12-May-2015)

Ref Expression
Hypotheses mapdh8a.h H = LHyp K
mapdh8a.u U = DVecH K W
mapdh8a.v V = Base U
mapdh8a.s - ˙ = - U
mapdh8a.o 0 ˙ = 0 U
mapdh8a.n N = LSpan U
mapdh8a.c C = LCDual K W
mapdh8a.d D = Base C
mapdh8a.r R = - C
mapdh8a.q Q = 0 C
mapdh8a.j J = LSpan C
mapdh8a.m M = mapd K W
mapdh8a.i I = x V if 2 nd x = 0 ˙ Q ι h D | M N 2 nd x = J h M N 1 st 1 st x - ˙ 2 nd x = J 2 nd 1 st x R h
mapdh8a.k φ K HL W H
mapdh8aa.f φ F D
mapdh8aa.mn φ M N X = J F
mapdh8aa.eg φ I X F Y = G
mapdh8aa.ee φ I X F Z = E
mapdh8aa.x φ X V 0 ˙
mapdh8aa.y φ Y V 0 ˙
mapdh8aa.z φ Z V 0 ˙
mapdh8aa.zt φ N Z N T
mapdh8aa.t φ T V 0 ˙
mapdh8aa.yn φ ¬ Y N Z T
mapdh8aa.xn φ ¬ X N Y Z
Assertion mapdh8aa φ I Y G T = I Z E T

Proof

Step Hyp Ref Expression
1 mapdh8a.h H = LHyp K
2 mapdh8a.u U = DVecH K W
3 mapdh8a.v V = Base U
4 mapdh8a.s - ˙ = - U
5 mapdh8a.o 0 ˙ = 0 U
6 mapdh8a.n N = LSpan U
7 mapdh8a.c C = LCDual K W
8 mapdh8a.d D = Base C
9 mapdh8a.r R = - C
10 mapdh8a.q Q = 0 C
11 mapdh8a.j J = LSpan C
12 mapdh8a.m M = mapd K W
13 mapdh8a.i I = x V if 2 nd x = 0 ˙ Q ι h D | M N 2 nd x = J h M N 1 st 1 st x - ˙ 2 nd x = J 2 nd 1 st x R h
14 mapdh8a.k φ K HL W H
15 mapdh8aa.f φ F D
16 mapdh8aa.mn φ M N X = J F
17 mapdh8aa.eg φ I X F Y = G
18 mapdh8aa.ee φ I X F Z = E
19 mapdh8aa.x φ X V 0 ˙
20 mapdh8aa.y φ Y V 0 ˙
21 mapdh8aa.z φ Z V 0 ˙
22 mapdh8aa.zt φ N Z N T
23 mapdh8aa.t φ T V 0 ˙
24 mapdh8aa.yn φ ¬ Y N Z T
25 mapdh8aa.xn φ ¬ X N Y Z
26 20 eldifad φ Y V
27 1 2 14 dvhlvec φ U LVec
28 19 eldifad φ X V
29 21 eldifad φ Z V
30 3 6 27 28 26 29 25 lspindpi φ N X N Y N X N Z
31 30 simpld φ N X N Y
32 10 13 1 12 2 3 4 5 6 7 8 9 11 14 15 16 19 26 31 mapdhcl φ I X F Y D
33 17 32 eqeltrrd φ G D
34 10 13 1 12 2 3 4 5 6 7 8 9 11 14 15 16 19 20 33 31 mapdheq φ I X F Y = G M N Y = J G M N X - ˙ Y = J F R G
35 17 34 mpbid φ M N Y = J G M N X - ˙ Y = J F R G
36 35 simpld φ M N Y = J G
37 23 eldifad φ T V
38 3 6 27 26 29 37 24 lspindpi φ N Y N Z N Y N T
39 38 simpld φ N Y N Z
40 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 39 25 19 20 21 mapdh75d φ I Y G Z = E
41 1 2 3 4 5 6 7 8 9 10 11 12 13 14 33 36 40 20 21 22 23 24 mapdh8a φ I Z E T = I Y G T
42 41 eqcomd φ I Y G T = I Z E T