Metamath Proof Explorer


Theorem mapdh8a

Description: Part of Part (8) in Baer p. 48. (Contributed by NM, 5-May-2015)

Ref Expression
Hypotheses mapdh8a.h H=LHypK
mapdh8a.u U=DVecHKW
mapdh8a.v V=BaseU
mapdh8a.s -˙=-U
mapdh8a.o 0˙=0U
mapdh8a.n N=LSpanU
mapdh8a.c C=LCDualKW
mapdh8a.d D=BaseC
mapdh8a.r R=-C
mapdh8a.q Q=0C
mapdh8a.j J=LSpanC
mapdh8a.m M=mapdKW
mapdh8a.i I=xVif2ndx=0˙QιhD|MN2ndx=JhMN1st1stx-˙2ndx=J2nd1stxRh
mapdh8a.k φKHLWH
mapdh8a.f φFD
mapdh8a.mn φMNX=JF
mapdh8a.a φIXFY=G
mapdh8a.x φXV0˙
mapdh8a.y φYV0˙
mapdh8a.yz φNYNT
mapdh8a.xt φTV0˙
mapdh8a.xn φ¬XNYT
Assertion mapdh8a φIYGT=IXFT

Proof

Step Hyp Ref Expression
1 mapdh8a.h H=LHypK
2 mapdh8a.u U=DVecHKW
3 mapdh8a.v V=BaseU
4 mapdh8a.s -˙=-U
5 mapdh8a.o 0˙=0U
6 mapdh8a.n N=LSpanU
7 mapdh8a.c C=LCDualKW
8 mapdh8a.d D=BaseC
9 mapdh8a.r R=-C
10 mapdh8a.q Q=0C
11 mapdh8a.j J=LSpanC
12 mapdh8a.m M=mapdKW
13 mapdh8a.i I=xVif2ndx=0˙QιhD|MN2ndx=JhMN1st1stx-˙2ndx=J2nd1stxRh
14 mapdh8a.k φKHLWH
15 mapdh8a.f φFD
16 mapdh8a.mn φMNX=JF
17 mapdh8a.a φIXFY=G
18 mapdh8a.x φXV0˙
19 mapdh8a.y φYV0˙
20 mapdh8a.yz φNYNT
21 mapdh8a.xt φTV0˙
22 mapdh8a.xn φ¬XNYT
23 eqidd φIXFT=IXFT
24 10 13 1 12 2 3 4 5 6 7 8 9 11 14 15 16 18 19 21 22 20 17 23 mapdheq4 φIYGT=IXFT