Description: Lemma to convert a frequently-used union condition. TODO: see if this can be applied to other hdmap* theorems. (Contributed by NM, 17-May-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | hdmaplem1.v | |- V = ( Base ` W ) |
|
hdmaplem1.n | |- N = ( LSpan ` W ) |
||
hdmaplem1.w | |- ( ph -> W e. LMod ) |
||
hdmaplem1.z | |- ( ph -> Z e. V ) |
||
hdmaplem1.j | |- ( ph -> -. Z e. ( ( N ` { X } ) u. ( N ` { Y } ) ) ) |
||
hdmaplem1.x | |- ( ph -> X e. V ) |
||
Assertion | hdmaplem1 | |- ( ph -> ( N ` { Z } ) =/= ( N ` { X } ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hdmaplem1.v | |- V = ( Base ` W ) |
|
2 | hdmaplem1.n | |- N = ( LSpan ` W ) |
|
3 | hdmaplem1.w | |- ( ph -> W e. LMod ) |
|
4 | hdmaplem1.z | |- ( ph -> Z e. V ) |
|
5 | hdmaplem1.j | |- ( ph -> -. Z e. ( ( N ` { X } ) u. ( N ` { Y } ) ) ) |
|
6 | hdmaplem1.x | |- ( ph -> X e. V ) |
|
7 | elun1 | |- ( Z e. ( N ` { X } ) -> Z e. ( ( N ` { X } ) u. ( N ` { Y } ) ) ) |
|
8 | 5 7 | nsyl | |- ( ph -> -. Z e. ( N ` { X } ) ) |
9 | 1 2 3 4 6 8 | lspsnne2 | |- ( ph -> ( N ` { Z } ) =/= ( N ` { X } ) ) |