Step |
Hyp |
Ref |
Expression |
1 |
|
hdmapval2.h |
|- H = ( LHyp ` K ) |
2 |
|
hdmapval2.e |
|- E = <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. |
3 |
|
hdmapval2.u |
|- U = ( ( DVecH ` K ) ` W ) |
4 |
|
hdmapval2.v |
|- V = ( Base ` U ) |
5 |
|
hdmapval2.n |
|- N = ( LSpan ` U ) |
6 |
|
hdmapval2.c |
|- C = ( ( LCDual ` K ) ` W ) |
7 |
|
hdmapval2.d |
|- D = ( Base ` C ) |
8 |
|
hdmapval2.j |
|- J = ( ( HVMap ` K ) ` W ) |
9 |
|
hdmapval2.i |
|- I = ( ( HDMap1 ` K ) ` W ) |
10 |
|
hdmapval2.s |
|- S = ( ( HDMap ` K ) ` W ) |
11 |
|
hdmapval2.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
12 |
|
hdmapval2.t |
|- ( ph -> T e. V ) |
13 |
|
hdmapval2.x |
|- ( ph -> X e. V ) |
14 |
|
hdmapval2.ne |
|- ( ph -> -. X e. ( ( N ` { E } ) u. ( N ` { T } ) ) ) |
15 |
|
eqidd |
|- ( ph -> ( S ` T ) = ( S ` T ) ) |
16 |
1 3 4 6 7 10 11 12
|
hdmapcl |
|- ( ph -> ( S ` T ) e. D ) |
17 |
1 2 3 4 5 6 7 8 9 10 11 12 16
|
hdmapval2lem |
|- ( ph -> ( ( S ` T ) = ( S ` T ) <-> A. z e. V ( -. z e. ( ( N ` { E } ) u. ( N ` { T } ) ) -> ( S ` T ) = ( I ` <. z , ( I ` <. E , ( J ` E ) , z >. ) , T >. ) ) ) ) |
18 |
15 17
|
mpbid |
|- ( ph -> A. z e. V ( -. z e. ( ( N ` { E } ) u. ( N ` { T } ) ) -> ( S ` T ) = ( I ` <. z , ( I ` <. E , ( J ` E ) , z >. ) , T >. ) ) ) |
19 |
|
eleq1 |
|- ( z = X -> ( z e. ( ( N ` { E } ) u. ( N ` { T } ) ) <-> X e. ( ( N ` { E } ) u. ( N ` { T } ) ) ) ) |
20 |
19
|
notbid |
|- ( z = X -> ( -. z e. ( ( N ` { E } ) u. ( N ` { T } ) ) <-> -. X e. ( ( N ` { E } ) u. ( N ` { T } ) ) ) ) |
21 |
|
oteq1 |
|- ( z = X -> <. z , ( I ` <. E , ( J ` E ) , z >. ) , T >. = <. X , ( I ` <. E , ( J ` E ) , z >. ) , T >. ) |
22 |
|
oteq3 |
|- ( z = X -> <. E , ( J ` E ) , z >. = <. E , ( J ` E ) , X >. ) |
23 |
22
|
fveq2d |
|- ( z = X -> ( I ` <. E , ( J ` E ) , z >. ) = ( I ` <. E , ( J ` E ) , X >. ) ) |
24 |
23
|
oteq2d |
|- ( z = X -> <. X , ( I ` <. E , ( J ` E ) , z >. ) , T >. = <. X , ( I ` <. E , ( J ` E ) , X >. ) , T >. ) |
25 |
21 24
|
eqtrd |
|- ( z = X -> <. z , ( I ` <. E , ( J ` E ) , z >. ) , T >. = <. X , ( I ` <. E , ( J ` E ) , X >. ) , T >. ) |
26 |
25
|
fveq2d |
|- ( z = X -> ( I ` <. z , ( I ` <. E , ( J ` E ) , z >. ) , T >. ) = ( I ` <. X , ( I ` <. E , ( J ` E ) , X >. ) , T >. ) ) |
27 |
26
|
eqeq2d |
|- ( z = X -> ( ( S ` T ) = ( I ` <. z , ( I ` <. E , ( J ` E ) , z >. ) , T >. ) <-> ( S ` T ) = ( I ` <. X , ( I ` <. E , ( J ` E ) , X >. ) , T >. ) ) ) |
28 |
20 27
|
imbi12d |
|- ( z = X -> ( ( -. z e. ( ( N ` { E } ) u. ( N ` { T } ) ) -> ( S ` T ) = ( I ` <. z , ( I ` <. E , ( J ` E ) , z >. ) , T >. ) ) <-> ( -. X e. ( ( N ` { E } ) u. ( N ` { T } ) ) -> ( S ` T ) = ( I ` <. X , ( I ` <. E , ( J ` E ) , X >. ) , T >. ) ) ) ) |
29 |
28
|
rspccv |
|- ( A. z e. V ( -. z e. ( ( N ` { E } ) u. ( N ` { T } ) ) -> ( S ` T ) = ( I ` <. z , ( I ` <. E , ( J ` E ) , z >. ) , T >. ) ) -> ( X e. V -> ( -. X e. ( ( N ` { E } ) u. ( N ` { T } ) ) -> ( S ` T ) = ( I ` <. X , ( I ` <. E , ( J ` E ) , X >. ) , T >. ) ) ) ) |
30 |
18 13 14 29
|
syl3c |
|- ( ph -> ( S ` T ) = ( I ` <. X , ( I ` <. E , ( J ` E ) , X >. ) , T >. ) ) |