| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hdmapval0.h |
|- H = ( LHyp ` K ) |
| 2 |
|
hdmapval0.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 3 |
|
hdmapval0.o |
|- .0. = ( 0g ` U ) |
| 4 |
|
hdmapval0.c |
|- C = ( ( LCDual ` K ) ` W ) |
| 5 |
|
hdmapval0.q |
|- Q = ( 0g ` C ) |
| 6 |
|
hdmapval0.s |
|- S = ( ( HDMap ` K ) ` W ) |
| 7 |
|
hdmapval0.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 8 |
|
eqid |
|- ( Base ` U ) = ( Base ` U ) |
| 9 |
|
eqid |
|- ( LSpan ` U ) = ( LSpan ` U ) |
| 10 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 11 |
|
eqid |
|- ( ( LTrn ` K ) ` W ) = ( ( LTrn ` K ) ` W ) |
| 12 |
|
eqid |
|- <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. = <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. |
| 13 |
1 10 11 2 8 3 12 7
|
dvheveccl |
|- ( ph -> <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. e. ( ( Base ` U ) \ { .0. } ) ) |
| 14 |
13
|
eldifad |
|- ( ph -> <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. e. ( Base ` U ) ) |
| 15 |
1 2 7
|
dvhlmod |
|- ( ph -> U e. LMod ) |
| 16 |
8 3
|
lmod0vcl |
|- ( U e. LMod -> .0. e. ( Base ` U ) ) |
| 17 |
15 16
|
syl |
|- ( ph -> .0. e. ( Base ` U ) ) |
| 18 |
1 2 8 9 7 14 17
|
dvh3dim |
|- ( ph -> E. x e. ( Base ` U ) -. x e. ( ( LSpan ` U ) ` { <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. , .0. } ) ) |
| 19 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
| 20 |
|
eqid |
|- ( ( HVMap ` K ) ` W ) = ( ( HVMap ` K ) ` W ) |
| 21 |
|
eqid |
|- ( ( HDMap1 ` K ) ` W ) = ( ( HDMap1 ` K ) ` W ) |
| 22 |
7
|
3ad2ant1 |
|- ( ( ph /\ x e. ( Base ` U ) /\ -. x e. ( ( LSpan ` U ) ` { <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. , .0. } ) ) -> ( K e. HL /\ W e. H ) ) |
| 23 |
17
|
3ad2ant1 |
|- ( ( ph /\ x e. ( Base ` U ) /\ -. x e. ( ( LSpan ` U ) ` { <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. , .0. } ) ) -> .0. e. ( Base ` U ) ) |
| 24 |
|
simp2 |
|- ( ( ph /\ x e. ( Base ` U ) /\ -. x e. ( ( LSpan ` U ) ` { <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. , .0. } ) ) -> x e. ( Base ` U ) ) |
| 25 |
|
eqid |
|- ( LSubSp ` U ) = ( LSubSp ` U ) |
| 26 |
8 25 9 15 14 17
|
lspprcl |
|- ( ph -> ( ( LSpan ` U ) ` { <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. , .0. } ) e. ( LSubSp ` U ) ) |
| 27 |
8 9 15 14 17
|
lspprid1 |
|- ( ph -> <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. e. ( ( LSpan ` U ) ` { <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. , .0. } ) ) |
| 28 |
25 9 15 26 27
|
ellspsn5 |
|- ( ph -> ( ( LSpan ` U ) ` { <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. } ) C_ ( ( LSpan ` U ) ` { <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. , .0. } ) ) |
| 29 |
8 9 15 14 17
|
lspprid2 |
|- ( ph -> .0. e. ( ( LSpan ` U ) ` { <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. , .0. } ) ) |
| 30 |
25 9 15 26 29
|
ellspsn5 |
|- ( ph -> ( ( LSpan ` U ) ` { .0. } ) C_ ( ( LSpan ` U ) ` { <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. , .0. } ) ) |
| 31 |
28 30
|
unssd |
|- ( ph -> ( ( ( LSpan ` U ) ` { <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. } ) u. ( ( LSpan ` U ) ` { .0. } ) ) C_ ( ( LSpan ` U ) ` { <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. , .0. } ) ) |
| 32 |
31
|
ssneld |
|- ( ph -> ( -. x e. ( ( LSpan ` U ) ` { <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. , .0. } ) -> -. x e. ( ( ( LSpan ` U ) ` { <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. } ) u. ( ( LSpan ` U ) ` { .0. } ) ) ) ) |
| 33 |
32
|
adantr |
|- ( ( ph /\ x e. ( Base ` U ) ) -> ( -. x e. ( ( LSpan ` U ) ` { <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. , .0. } ) -> -. x e. ( ( ( LSpan ` U ) ` { <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. } ) u. ( ( LSpan ` U ) ` { .0. } ) ) ) ) |
| 34 |
33
|
3impia |
|- ( ( ph /\ x e. ( Base ` U ) /\ -. x e. ( ( LSpan ` U ) ` { <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. , .0. } ) ) -> -. x e. ( ( ( LSpan ` U ) ` { <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. } ) u. ( ( LSpan ` U ) ` { .0. } ) ) ) |
| 35 |
1 12 2 8 9 4 19 20 21 6 22 23 24 34
|
hdmapval2 |
|- ( ( ph /\ x e. ( Base ` U ) /\ -. x e. ( ( LSpan ` U ) ` { <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. , .0. } ) ) -> ( S ` .0. ) = ( ( ( HDMap1 ` K ) ` W ) ` <. x , ( ( ( HDMap1 ` K ) ` W ) ` <. <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. , ( ( ( HVMap ` K ) ` W ) ` <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. ) , x >. ) , .0. >. ) ) |
| 36 |
|
eqid |
|- ( LSpan ` C ) = ( LSpan ` C ) |
| 37 |
|
eqid |
|- ( ( mapd ` K ) ` W ) = ( ( mapd ` K ) ` W ) |
| 38 |
1 2 8 3 4 19 5 20 7 13
|
hvmapcl2 |
|- ( ph -> ( ( ( HVMap ` K ) ` W ) ` <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. ) e. ( ( Base ` C ) \ { Q } ) ) |
| 39 |
38
|
eldifad |
|- ( ph -> ( ( ( HVMap ` K ) ` W ) ` <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. ) e. ( Base ` C ) ) |
| 40 |
39
|
3ad2ant1 |
|- ( ( ph /\ x e. ( Base ` U ) /\ -. x e. ( ( LSpan ` U ) ` { <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. , .0. } ) ) -> ( ( ( HVMap ` K ) ` W ) ` <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. ) e. ( Base ` C ) ) |
| 41 |
1 2 8 3 9 4 36 37 20 7 13
|
mapdhvmap |
|- ( ph -> ( ( ( mapd ` K ) ` W ) ` ( ( LSpan ` U ) ` { <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. } ) ) = ( ( LSpan ` C ) ` { ( ( ( HVMap ` K ) ` W ) ` <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. ) } ) ) |
| 42 |
41
|
3ad2ant1 |
|- ( ( ph /\ x e. ( Base ` U ) /\ -. x e. ( ( LSpan ` U ) ` { <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. , .0. } ) ) -> ( ( ( mapd ` K ) ` W ) ` ( ( LSpan ` U ) ` { <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. } ) ) = ( ( LSpan ` C ) ` { ( ( ( HVMap ` K ) ` W ) ` <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. ) } ) ) |
| 43 |
1 2 7
|
dvhlvec |
|- ( ph -> U e. LVec ) |
| 44 |
43
|
3ad2ant1 |
|- ( ( ph /\ x e. ( Base ` U ) /\ -. x e. ( ( LSpan ` U ) ` { <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. , .0. } ) ) -> U e. LVec ) |
| 45 |
14
|
3ad2ant1 |
|- ( ( ph /\ x e. ( Base ` U ) /\ -. x e. ( ( LSpan ` U ) ` { <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. , .0. } ) ) -> <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. e. ( Base ` U ) ) |
| 46 |
|
simp3 |
|- ( ( ph /\ x e. ( Base ` U ) /\ -. x e. ( ( LSpan ` U ) ` { <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. , .0. } ) ) -> -. x e. ( ( LSpan ` U ) ` { <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. , .0. } ) ) |
| 47 |
8 9 44 24 45 23 46
|
lspindpi |
|- ( ( ph /\ x e. ( Base ` U ) /\ -. x e. ( ( LSpan ` U ) ` { <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. , .0. } ) ) -> ( ( ( LSpan ` U ) ` { x } ) =/= ( ( LSpan ` U ) ` { <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. } ) /\ ( ( LSpan ` U ) ` { x } ) =/= ( ( LSpan ` U ) ` { .0. } ) ) ) |
| 48 |
47
|
simpld |
|- ( ( ph /\ x e. ( Base ` U ) /\ -. x e. ( ( LSpan ` U ) ` { <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. , .0. } ) ) -> ( ( LSpan ` U ) ` { x } ) =/= ( ( LSpan ` U ) ` { <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. } ) ) |
| 49 |
48
|
necomd |
|- ( ( ph /\ x e. ( Base ` U ) /\ -. x e. ( ( LSpan ` U ) ` { <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. , .0. } ) ) -> ( ( LSpan ` U ) ` { <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. } ) =/= ( ( LSpan ` U ) ` { x } ) ) |
| 50 |
13
|
3ad2ant1 |
|- ( ( ph /\ x e. ( Base ` U ) /\ -. x e. ( ( LSpan ` U ) ` { <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. , .0. } ) ) -> <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. e. ( ( Base ` U ) \ { .0. } ) ) |
| 51 |
1 2 8 3 9 4 19 36 37 21 22 40 42 49 50 24
|
hdmap1cl |
|- ( ( ph /\ x e. ( Base ` U ) /\ -. x e. ( ( LSpan ` U ) ` { <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. , .0. } ) ) -> ( ( ( HDMap1 ` K ) ` W ) ` <. <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. , ( ( ( HVMap ` K ) ` W ) ` <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. ) , x >. ) e. ( Base ` C ) ) |
| 52 |
1 2 8 3 4 19 5 21 22 51 24
|
hdmap1val0 |
|- ( ( ph /\ x e. ( Base ` U ) /\ -. x e. ( ( LSpan ` U ) ` { <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. , .0. } ) ) -> ( ( ( HDMap1 ` K ) ` W ) ` <. x , ( ( ( HDMap1 ` K ) ` W ) ` <. <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. , ( ( ( HVMap ` K ) ` W ) ` <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. ) , x >. ) , .0. >. ) = Q ) |
| 53 |
35 52
|
eqtrd |
|- ( ( ph /\ x e. ( Base ` U ) /\ -. x e. ( ( LSpan ` U ) ` { <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. , .0. } ) ) -> ( S ` .0. ) = Q ) |
| 54 |
53
|
rexlimdv3a |
|- ( ph -> ( E. x e. ( Base ` U ) -. x e. ( ( LSpan ` U ) ` { <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. , .0. } ) -> ( S ` .0. ) = Q ) ) |
| 55 |
18 54
|
mpd |
|- ( ph -> ( S ` .0. ) = Q ) |