| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmapevec.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | hdmapevec.e |  |-  E = <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. | 
						
							| 3 |  | hdmapevec.j |  |-  J = ( ( HVMap ` K ) ` W ) | 
						
							| 4 |  | hdmapevec.s |  |-  S = ( ( HDMap ` K ) ` W ) | 
						
							| 5 |  | hdmapevec.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 6 |  | hdmapevec.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 7 |  | hdmapevec.v |  |-  V = ( Base ` U ) | 
						
							| 8 |  | hdmapevec.n |  |-  N = ( LSpan ` U ) | 
						
							| 9 |  | hdmapevec.c |  |-  C = ( ( LCDual ` K ) ` W ) | 
						
							| 10 |  | hdmapevec.d |  |-  D = ( Base ` C ) | 
						
							| 11 |  | hdmapevec.i |  |-  I = ( ( HDMap1 ` K ) ` W ) | 
						
							| 12 |  | hdmapevec.x |  |-  ( ph -> X e. V ) | 
						
							| 13 |  | hdmapevec.ne |  |-  ( ph -> -. X e. ( ( N ` { E } ) u. ( N ` { E } ) ) ) | 
						
							| 14 |  | eqid |  |-  ( Base ` K ) = ( Base ` K ) | 
						
							| 15 |  | eqid |  |-  ( ( LTrn ` K ) ` W ) = ( ( LTrn ` K ) ` W ) | 
						
							| 16 |  | eqid |  |-  ( 0g ` U ) = ( 0g ` U ) | 
						
							| 17 | 1 14 15 6 7 16 2 5 | dvheveccl |  |-  ( ph -> E e. ( V \ { ( 0g ` U ) } ) ) | 
						
							| 18 | 17 | eldifad |  |-  ( ph -> E e. V ) | 
						
							| 19 | 1 2 6 7 8 9 10 3 11 4 5 18 12 13 | hdmapval2 |  |-  ( ph -> ( S ` E ) = ( I ` <. X , ( I ` <. E , ( J ` E ) , X >. ) , E >. ) ) | 
						
							| 20 |  | eqid |  |-  ( LSpan ` C ) = ( LSpan ` C ) | 
						
							| 21 |  | eqid |  |-  ( ( mapd ` K ) ` W ) = ( ( mapd ` K ) ` W ) | 
						
							| 22 |  | eqid |  |-  ( 0g ` C ) = ( 0g ` C ) | 
						
							| 23 | 1 6 7 16 9 10 22 3 5 17 | hvmapcl2 |  |-  ( ph -> ( J ` E ) e. ( D \ { ( 0g ` C ) } ) ) | 
						
							| 24 | 23 | eldifad |  |-  ( ph -> ( J ` E ) e. D ) | 
						
							| 25 | 1 6 7 16 8 9 20 21 3 5 17 | mapdhvmap |  |-  ( ph -> ( ( ( mapd ` K ) ` W ) ` ( N ` { E } ) ) = ( ( LSpan ` C ) ` { ( J ` E ) } ) ) | 
						
							| 26 | 1 6 5 | dvhlmod |  |-  ( ph -> U e. LMod ) | 
						
							| 27 | 7 8 26 12 13 18 | hdmaplem1 |  |-  ( ph -> ( N ` { X } ) =/= ( N ` { E } ) ) | 
						
							| 28 | 27 | necomd |  |-  ( ph -> ( N ` { E } ) =/= ( N ` { X } ) ) | 
						
							| 29 | 7 8 26 12 13 18 16 | hdmaplem3 |  |-  ( ph -> X e. ( V \ { ( 0g ` U ) } ) ) | 
						
							| 30 |  | eqidd |  |-  ( ph -> ( I ` <. E , ( J ` E ) , X >. ) = ( I ` <. E , ( J ` E ) , X >. ) ) | 
						
							| 31 | 1 6 7 16 8 9 10 20 21 11 5 24 25 28 17 29 30 | hdmap1eq2 |  |-  ( ph -> ( I ` <. X , ( I ` <. E , ( J ` E ) , X >. ) , E >. ) = ( J ` E ) ) | 
						
							| 32 | 19 31 | eqtrd |  |-  ( ph -> ( S ` E ) = ( J ` E ) ) |