Step |
Hyp |
Ref |
Expression |
1 |
|
hdmapevec.h |
|- H = ( LHyp ` K ) |
2 |
|
hdmapevec.e |
|- E = <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. |
3 |
|
hdmapevec.j |
|- J = ( ( HVMap ` K ) ` W ) |
4 |
|
hdmapevec.s |
|- S = ( ( HDMap ` K ) ` W ) |
5 |
|
hdmapevec.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
6 |
|
hdmapevec.u |
|- U = ( ( DVecH ` K ) ` W ) |
7 |
|
hdmapevec.v |
|- V = ( Base ` U ) |
8 |
|
hdmapevec.n |
|- N = ( LSpan ` U ) |
9 |
|
hdmapevec.c |
|- C = ( ( LCDual ` K ) ` W ) |
10 |
|
hdmapevec.d |
|- D = ( Base ` C ) |
11 |
|
hdmapevec.i |
|- I = ( ( HDMap1 ` K ) ` W ) |
12 |
|
hdmapevec.x |
|- ( ph -> X e. V ) |
13 |
|
hdmapevec.ne |
|- ( ph -> -. X e. ( ( N ` { E } ) u. ( N ` { E } ) ) ) |
14 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
15 |
|
eqid |
|- ( ( LTrn ` K ) ` W ) = ( ( LTrn ` K ) ` W ) |
16 |
|
eqid |
|- ( 0g ` U ) = ( 0g ` U ) |
17 |
1 14 15 6 7 16 2 5
|
dvheveccl |
|- ( ph -> E e. ( V \ { ( 0g ` U ) } ) ) |
18 |
17
|
eldifad |
|- ( ph -> E e. V ) |
19 |
1 2 6 7 8 9 10 3 11 4 5 18 12 13
|
hdmapval2 |
|- ( ph -> ( S ` E ) = ( I ` <. X , ( I ` <. E , ( J ` E ) , X >. ) , E >. ) ) |
20 |
|
eqid |
|- ( LSpan ` C ) = ( LSpan ` C ) |
21 |
|
eqid |
|- ( ( mapd ` K ) ` W ) = ( ( mapd ` K ) ` W ) |
22 |
|
eqid |
|- ( 0g ` C ) = ( 0g ` C ) |
23 |
1 6 7 16 9 10 22 3 5 17
|
hvmapcl2 |
|- ( ph -> ( J ` E ) e. ( D \ { ( 0g ` C ) } ) ) |
24 |
23
|
eldifad |
|- ( ph -> ( J ` E ) e. D ) |
25 |
1 6 7 16 8 9 20 21 3 5 17
|
mapdhvmap |
|- ( ph -> ( ( ( mapd ` K ) ` W ) ` ( N ` { E } ) ) = ( ( LSpan ` C ) ` { ( J ` E ) } ) ) |
26 |
1 6 5
|
dvhlmod |
|- ( ph -> U e. LMod ) |
27 |
7 8 26 12 13 18
|
hdmaplem1 |
|- ( ph -> ( N ` { X } ) =/= ( N ` { E } ) ) |
28 |
27
|
necomd |
|- ( ph -> ( N ` { E } ) =/= ( N ` { X } ) ) |
29 |
7 8 26 12 13 18 16
|
hdmaplem3 |
|- ( ph -> X e. ( V \ { ( 0g ` U ) } ) ) |
30 |
|
eqidd |
|- ( ph -> ( I ` <. E , ( J ` E ) , X >. ) = ( I ` <. E , ( J ` E ) , X >. ) ) |
31 |
1 6 7 16 8 9 10 20 21 11 5 24 25 28 17 29 30
|
hdmap1eq2 |
|- ( ph -> ( I ` <. X , ( I ` <. E , ( J ` E ) , X >. ) , E >. ) = ( J ` E ) ) |
32 |
19 31
|
eqtrd |
|- ( ph -> ( S ` E ) = ( J ` E ) ) |