Metamath Proof Explorer


Theorem hdmapeveclem

Description: Lemma for hdmapevec . TODO: combine with hdmapevec if it shortens overall. (Contributed by NM, 16-May-2015)

Ref Expression
Hypotheses hdmapevec.h
|- H = ( LHyp ` K )
hdmapevec.e
|- E = <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >.
hdmapevec.j
|- J = ( ( HVMap ` K ) ` W )
hdmapevec.s
|- S = ( ( HDMap ` K ) ` W )
hdmapevec.k
|- ( ph -> ( K e. HL /\ W e. H ) )
hdmapevec.u
|- U = ( ( DVecH ` K ) ` W )
hdmapevec.v
|- V = ( Base ` U )
hdmapevec.n
|- N = ( LSpan ` U )
hdmapevec.c
|- C = ( ( LCDual ` K ) ` W )
hdmapevec.d
|- D = ( Base ` C )
hdmapevec.i
|- I = ( ( HDMap1 ` K ) ` W )
hdmapevec.x
|- ( ph -> X e. V )
hdmapevec.ne
|- ( ph -> -. X e. ( ( N ` { E } ) u. ( N ` { E } ) ) )
Assertion hdmapeveclem
|- ( ph -> ( S ` E ) = ( J ` E ) )

Proof

Step Hyp Ref Expression
1 hdmapevec.h
 |-  H = ( LHyp ` K )
2 hdmapevec.e
 |-  E = <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >.
3 hdmapevec.j
 |-  J = ( ( HVMap ` K ) ` W )
4 hdmapevec.s
 |-  S = ( ( HDMap ` K ) ` W )
5 hdmapevec.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
6 hdmapevec.u
 |-  U = ( ( DVecH ` K ) ` W )
7 hdmapevec.v
 |-  V = ( Base ` U )
8 hdmapevec.n
 |-  N = ( LSpan ` U )
9 hdmapevec.c
 |-  C = ( ( LCDual ` K ) ` W )
10 hdmapevec.d
 |-  D = ( Base ` C )
11 hdmapevec.i
 |-  I = ( ( HDMap1 ` K ) ` W )
12 hdmapevec.x
 |-  ( ph -> X e. V )
13 hdmapevec.ne
 |-  ( ph -> -. X e. ( ( N ` { E } ) u. ( N ` { E } ) ) )
14 eqid
 |-  ( Base ` K ) = ( Base ` K )
15 eqid
 |-  ( ( LTrn ` K ) ` W ) = ( ( LTrn ` K ) ` W )
16 eqid
 |-  ( 0g ` U ) = ( 0g ` U )
17 1 14 15 6 7 16 2 5 dvheveccl
 |-  ( ph -> E e. ( V \ { ( 0g ` U ) } ) )
18 17 eldifad
 |-  ( ph -> E e. V )
19 1 2 6 7 8 9 10 3 11 4 5 18 12 13 hdmapval2
 |-  ( ph -> ( S ` E ) = ( I ` <. X , ( I ` <. E , ( J ` E ) , X >. ) , E >. ) )
20 eqid
 |-  ( LSpan ` C ) = ( LSpan ` C )
21 eqid
 |-  ( ( mapd ` K ) ` W ) = ( ( mapd ` K ) ` W )
22 eqid
 |-  ( 0g ` C ) = ( 0g ` C )
23 1 6 7 16 9 10 22 3 5 17 hvmapcl2
 |-  ( ph -> ( J ` E ) e. ( D \ { ( 0g ` C ) } ) )
24 23 eldifad
 |-  ( ph -> ( J ` E ) e. D )
25 1 6 7 16 8 9 20 21 3 5 17 mapdhvmap
 |-  ( ph -> ( ( ( mapd ` K ) ` W ) ` ( N ` { E } ) ) = ( ( LSpan ` C ) ` { ( J ` E ) } ) )
26 1 6 5 dvhlmod
 |-  ( ph -> U e. LMod )
27 7 8 26 12 13 18 hdmaplem1
 |-  ( ph -> ( N ` { X } ) =/= ( N ` { E } ) )
28 27 necomd
 |-  ( ph -> ( N ` { E } ) =/= ( N ` { X } ) )
29 7 8 26 12 13 18 16 hdmaplem3
 |-  ( ph -> X e. ( V \ { ( 0g ` U ) } ) )
30 eqidd
 |-  ( ph -> ( I ` <. E , ( J ` E ) , X >. ) = ( I ` <. E , ( J ` E ) , X >. ) )
31 1 6 7 16 8 9 10 20 21 11 5 24 25 28 17 29 30 hdmap1eq2
 |-  ( ph -> ( I ` <. X , ( I ` <. E , ( J ` E ) , X >. ) , E >. ) = ( J ` E ) )
32 19 31 eqtrd
 |-  ( ph -> ( S ` E ) = ( J ` E ) )