| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hdmapevec.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
hdmapevec.e |
⊢ 𝐸 = 〈 ( I ↾ ( Base ‘ 𝐾 ) ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 |
| 3 |
|
hdmapevec.j |
⊢ 𝐽 = ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) |
| 4 |
|
hdmapevec.s |
⊢ 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) |
| 5 |
|
hdmapevec.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 6 |
|
hdmapevec.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 7 |
|
hdmapevec.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
| 8 |
|
hdmapevec.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
| 9 |
|
hdmapevec.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
| 10 |
|
hdmapevec.d |
⊢ 𝐷 = ( Base ‘ 𝐶 ) |
| 11 |
|
hdmapevec.i |
⊢ 𝐼 = ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 ) |
| 12 |
|
hdmapevec.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 13 |
|
hdmapevec.ne |
⊢ ( 𝜑 → ¬ 𝑋 ∈ ( ( 𝑁 ‘ { 𝐸 } ) ∪ ( 𝑁 ‘ { 𝐸 } ) ) ) |
| 14 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
| 15 |
|
eqid |
⊢ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
| 16 |
|
eqid |
⊢ ( 0g ‘ 𝑈 ) = ( 0g ‘ 𝑈 ) |
| 17 |
1 14 15 6 7 16 2 5
|
dvheveccl |
⊢ ( 𝜑 → 𝐸 ∈ ( 𝑉 ∖ { ( 0g ‘ 𝑈 ) } ) ) |
| 18 |
17
|
eldifad |
⊢ ( 𝜑 → 𝐸 ∈ 𝑉 ) |
| 19 |
1 2 6 7 8 9 10 3 11 4 5 18 12 13
|
hdmapval2 |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝐸 ) = ( 𝐼 ‘ 〈 𝑋 , ( 𝐼 ‘ 〈 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑋 〉 ) , 𝐸 〉 ) ) |
| 20 |
|
eqid |
⊢ ( LSpan ‘ 𝐶 ) = ( LSpan ‘ 𝐶 ) |
| 21 |
|
eqid |
⊢ ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) |
| 22 |
|
eqid |
⊢ ( 0g ‘ 𝐶 ) = ( 0g ‘ 𝐶 ) |
| 23 |
1 6 7 16 9 10 22 3 5 17
|
hvmapcl2 |
⊢ ( 𝜑 → ( 𝐽 ‘ 𝐸 ) ∈ ( 𝐷 ∖ { ( 0g ‘ 𝐶 ) } ) ) |
| 24 |
23
|
eldifad |
⊢ ( 𝜑 → ( 𝐽 ‘ 𝐸 ) ∈ 𝐷 ) |
| 25 |
1 6 7 16 8 9 20 21 3 5 17
|
mapdhvmap |
⊢ ( 𝜑 → ( ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑁 ‘ { 𝐸 } ) ) = ( ( LSpan ‘ 𝐶 ) ‘ { ( 𝐽 ‘ 𝐸 ) } ) ) |
| 26 |
1 6 5
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
| 27 |
7 8 26 12 13 18
|
hdmaplem1 |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝐸 } ) ) |
| 28 |
27
|
necomd |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝐸 } ) ≠ ( 𝑁 ‘ { 𝑋 } ) ) |
| 29 |
7 8 26 12 13 18 16
|
hdmaplem3 |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑉 ∖ { ( 0g ‘ 𝑈 ) } ) ) |
| 30 |
|
eqidd |
⊢ ( 𝜑 → ( 𝐼 ‘ 〈 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑋 〉 ) = ( 𝐼 ‘ 〈 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑋 〉 ) ) |
| 31 |
1 6 7 16 8 9 10 20 21 11 5 24 25 28 17 29 30
|
hdmap1eq2 |
⊢ ( 𝜑 → ( 𝐼 ‘ 〈 𝑋 , ( 𝐼 ‘ 〈 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑋 〉 ) , 𝐸 〉 ) = ( 𝐽 ‘ 𝐸 ) ) |
| 32 |
19 31
|
eqtrd |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝐸 ) = ( 𝐽 ‘ 𝐸 ) ) |