| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmapevec.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | hdmapevec.e | ⊢ 𝐸  =  〈 (  I   ↾  ( Base ‘ 𝐾 ) ) ,  (  I   ↾  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 | 
						
							| 3 |  | hdmapevec.j | ⊢ 𝐽  =  ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 4 |  | hdmapevec.s | ⊢ 𝑆  =  ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 5 |  | hdmapevec.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 6 |  | hdmapevec.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 7 |  | hdmapevec.v | ⊢ 𝑉  =  ( Base ‘ 𝑈 ) | 
						
							| 8 |  | hdmapevec.n | ⊢ 𝑁  =  ( LSpan ‘ 𝑈 ) | 
						
							| 9 |  | hdmapevec.c | ⊢ 𝐶  =  ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 10 |  | hdmapevec.d | ⊢ 𝐷  =  ( Base ‘ 𝐶 ) | 
						
							| 11 |  | hdmapevec.i | ⊢ 𝐼  =  ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 12 |  | hdmapevec.x | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 13 |  | hdmapevec.ne | ⊢ ( 𝜑  →  ¬  𝑋  ∈  ( ( 𝑁 ‘ { 𝐸 } )  ∪  ( 𝑁 ‘ { 𝐸 } ) ) ) | 
						
							| 14 |  | eqid | ⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 ) | 
						
							| 15 |  | eqid | ⊢ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )  =  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 16 |  | eqid | ⊢ ( 0g ‘ 𝑈 )  =  ( 0g ‘ 𝑈 ) | 
						
							| 17 | 1 14 15 6 7 16 2 5 | dvheveccl | ⊢ ( 𝜑  →  𝐸  ∈  ( 𝑉  ∖  { ( 0g ‘ 𝑈 ) } ) ) | 
						
							| 18 | 17 | eldifad | ⊢ ( 𝜑  →  𝐸  ∈  𝑉 ) | 
						
							| 19 | 1 2 6 7 8 9 10 3 11 4 5 18 12 13 | hdmapval2 | ⊢ ( 𝜑  →  ( 𝑆 ‘ 𝐸 )  =  ( 𝐼 ‘ 〈 𝑋 ,  ( 𝐼 ‘ 〈 𝐸 ,  ( 𝐽 ‘ 𝐸 ) ,  𝑋 〉 ) ,  𝐸 〉 ) ) | 
						
							| 20 |  | eqid | ⊢ ( LSpan ‘ 𝐶 )  =  ( LSpan ‘ 𝐶 ) | 
						
							| 21 |  | eqid | ⊢ ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )  =  ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 22 |  | eqid | ⊢ ( 0g ‘ 𝐶 )  =  ( 0g ‘ 𝐶 ) | 
						
							| 23 | 1 6 7 16 9 10 22 3 5 17 | hvmapcl2 | ⊢ ( 𝜑  →  ( 𝐽 ‘ 𝐸 )  ∈  ( 𝐷  ∖  { ( 0g ‘ 𝐶 ) } ) ) | 
						
							| 24 | 23 | eldifad | ⊢ ( 𝜑  →  ( 𝐽 ‘ 𝐸 )  ∈  𝐷 ) | 
						
							| 25 | 1 6 7 16 8 9 20 21 3 5 17 | mapdhvmap | ⊢ ( 𝜑  →  ( ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑁 ‘ { 𝐸 } ) )  =  ( ( LSpan ‘ 𝐶 ) ‘ { ( 𝐽 ‘ 𝐸 ) } ) ) | 
						
							| 26 | 1 6 5 | dvhlmod | ⊢ ( 𝜑  →  𝑈  ∈  LMod ) | 
						
							| 27 | 7 8 26 12 13 18 | hdmaplem1 | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑋 } )  ≠  ( 𝑁 ‘ { 𝐸 } ) ) | 
						
							| 28 | 27 | necomd | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝐸 } )  ≠  ( 𝑁 ‘ { 𝑋 } ) ) | 
						
							| 29 | 7 8 26 12 13 18 16 | hdmaplem3 | ⊢ ( 𝜑  →  𝑋  ∈  ( 𝑉  ∖  { ( 0g ‘ 𝑈 ) } ) ) | 
						
							| 30 |  | eqidd | ⊢ ( 𝜑  →  ( 𝐼 ‘ 〈 𝐸 ,  ( 𝐽 ‘ 𝐸 ) ,  𝑋 〉 )  =  ( 𝐼 ‘ 〈 𝐸 ,  ( 𝐽 ‘ 𝐸 ) ,  𝑋 〉 ) ) | 
						
							| 31 | 1 6 7 16 8 9 10 20 21 11 5 24 25 28 17 29 30 | hdmap1eq2 | ⊢ ( 𝜑  →  ( 𝐼 ‘ 〈 𝑋 ,  ( 𝐼 ‘ 〈 𝐸 ,  ( 𝐽 ‘ 𝐸 ) ,  𝑋 〉 ) ,  𝐸 〉 )  =  ( 𝐽 ‘ 𝐸 ) ) | 
						
							| 32 | 19 31 | eqtrd | ⊢ ( 𝜑  →  ( 𝑆 ‘ 𝐸 )  =  ( 𝐽 ‘ 𝐸 ) ) |