Metamath Proof Explorer


Theorem hdmapeveclem

Description: Lemma for hdmapevec . TODO: combine with hdmapevec if it shortens overall. (Contributed by NM, 16-May-2015)

Ref Expression
Hypotheses hdmapevec.h H=LHypK
hdmapevec.e E=IBaseKILTrnKW
hdmapevec.j J=HVMapKW
hdmapevec.s S=HDMapKW
hdmapevec.k φKHLWH
hdmapevec.u U=DVecHKW
hdmapevec.v V=BaseU
hdmapevec.n N=LSpanU
hdmapevec.c C=LCDualKW
hdmapevec.d D=BaseC
hdmapevec.i I=HDMap1KW
hdmapevec.x φXV
hdmapevec.ne φ¬XNENE
Assertion hdmapeveclem φSE=JE

Proof

Step Hyp Ref Expression
1 hdmapevec.h H=LHypK
2 hdmapevec.e E=IBaseKILTrnKW
3 hdmapevec.j J=HVMapKW
4 hdmapevec.s S=HDMapKW
5 hdmapevec.k φKHLWH
6 hdmapevec.u U=DVecHKW
7 hdmapevec.v V=BaseU
8 hdmapevec.n N=LSpanU
9 hdmapevec.c C=LCDualKW
10 hdmapevec.d D=BaseC
11 hdmapevec.i I=HDMap1KW
12 hdmapevec.x φXV
13 hdmapevec.ne φ¬XNENE
14 eqid BaseK=BaseK
15 eqid LTrnKW=LTrnKW
16 eqid 0U=0U
17 1 14 15 6 7 16 2 5 dvheveccl φEV0U
18 17 eldifad φEV
19 1 2 6 7 8 9 10 3 11 4 5 18 12 13 hdmapval2 φSE=IXIEJEXE
20 eqid LSpanC=LSpanC
21 eqid mapdKW=mapdKW
22 eqid 0C=0C
23 1 6 7 16 9 10 22 3 5 17 hvmapcl2 φJED0C
24 23 eldifad φJED
25 1 6 7 16 8 9 20 21 3 5 17 mapdhvmap φmapdKWNE=LSpanCJE
26 1 6 5 dvhlmod φULMod
27 7 8 26 12 13 18 hdmaplem1 φNXNE
28 27 necomd φNENX
29 7 8 26 12 13 18 16 hdmaplem3 φXV0U
30 eqidd φIEJEX=IEJEX
31 1 6 7 16 8 9 10 20 21 11 5 24 25 28 17 29 30 hdmap1eq2 φIXIEJEXE=JE
32 19 31 eqtrd φSE=JE