Metamath Proof Explorer


Theorem hdmapeveclem

Description: Lemma for hdmapevec . TODO: combine with hdmapevec if it shortens overall. (Contributed by NM, 16-May-2015)

Ref Expression
Hypotheses hdmapevec.h H = LHyp K
hdmapevec.e E = I Base K I LTrn K W
hdmapevec.j J = HVMap K W
hdmapevec.s S = HDMap K W
hdmapevec.k φ K HL W H
hdmapevec.u U = DVecH K W
hdmapevec.v V = Base U
hdmapevec.n N = LSpan U
hdmapevec.c C = LCDual K W
hdmapevec.d D = Base C
hdmapevec.i I = HDMap1 K W
hdmapevec.x φ X V
hdmapevec.ne φ ¬ X N E N E
Assertion hdmapeveclem φ S E = J E

Proof

Step Hyp Ref Expression
1 hdmapevec.h H = LHyp K
2 hdmapevec.e E = I Base K I LTrn K W
3 hdmapevec.j J = HVMap K W
4 hdmapevec.s S = HDMap K W
5 hdmapevec.k φ K HL W H
6 hdmapevec.u U = DVecH K W
7 hdmapevec.v V = Base U
8 hdmapevec.n N = LSpan U
9 hdmapevec.c C = LCDual K W
10 hdmapevec.d D = Base C
11 hdmapevec.i I = HDMap1 K W
12 hdmapevec.x φ X V
13 hdmapevec.ne φ ¬ X N E N E
14 eqid Base K = Base K
15 eqid LTrn K W = LTrn K W
16 eqid 0 U = 0 U
17 1 14 15 6 7 16 2 5 dvheveccl φ E V 0 U
18 17 eldifad φ E V
19 1 2 6 7 8 9 10 3 11 4 5 18 12 13 hdmapval2 φ S E = I X I E J E X E
20 eqid LSpan C = LSpan C
21 eqid mapd K W = mapd K W
22 eqid 0 C = 0 C
23 1 6 7 16 9 10 22 3 5 17 hvmapcl2 φ J E D 0 C
24 23 eldifad φ J E D
25 1 6 7 16 8 9 20 21 3 5 17 mapdhvmap φ mapd K W N E = LSpan C J E
26 1 6 5 dvhlmod φ U LMod
27 7 8 26 12 13 18 hdmaplem1 φ N X N E
28 27 necomd φ N E N X
29 7 8 26 12 13 18 16 hdmaplem3 φ X V 0 U
30 eqidd φ I E J E X = I E J E X
31 1 6 7 16 8 9 10 20 21 11 5 24 25 28 17 29 30 hdmap1eq2 φ I X I E J E X E = J E
32 19 31 eqtrd φ S E = J E