Metamath Proof Explorer


Definition df-hvmap

Description: Extend class notation with a map from each nonzero vector x to a unique nonzero functional in the closed kernel dual space. (We could extend it to include the zero vector, but that is unnecessary for our purposes.) TODO: This pattern is used several times earlier, e.g., lcf1o , dochfl1 - should we update those to use this definition? (Contributed by NM, 23-Mar-2015)

Ref Expression
Assertion df-hvmap HVMap = k V w LHyp k x Base DVecH k w 0 DVecH k w v Base DVecH k w ι j Base Scalar DVecH k w | t ocH k w x v = t + DVecH k w j DVecH k w x

Detailed syntax breakdown

Step Hyp Ref Expression
0 chvm class HVMap
1 vk setvar k
2 cvv class V
3 vw setvar w
4 clh class LHyp
5 1 cv setvar k
6 5 4 cfv class LHyp k
7 vx setvar x
8 cbs class Base
9 cdvh class DVecH
10 5 9 cfv class DVecH k
11 3 cv setvar w
12 11 10 cfv class DVecH k w
13 12 8 cfv class Base DVecH k w
14 c0g class 0 𝑔
15 12 14 cfv class 0 DVecH k w
16 15 csn class 0 DVecH k w
17 13 16 cdif class Base DVecH k w 0 DVecH k w
18 vv setvar v
19 vj setvar j
20 csca class Scalar
21 12 20 cfv class Scalar DVecH k w
22 21 8 cfv class Base Scalar DVecH k w
23 vt setvar t
24 coch class ocH
25 5 24 cfv class ocH k
26 11 25 cfv class ocH k w
27 7 cv setvar x
28 27 csn class x
29 28 26 cfv class ocH k w x
30 18 cv setvar v
31 23 cv setvar t
32 cplusg class + 𝑔
33 12 32 cfv class + DVecH k w
34 19 cv setvar j
35 cvsca class 𝑠
36 12 35 cfv class DVecH k w
37 34 27 36 co class j DVecH k w x
38 31 37 33 co class t + DVecH k w j DVecH k w x
39 30 38 wceq wff v = t + DVecH k w j DVecH k w x
40 39 23 29 wrex wff t ocH k w x v = t + DVecH k w j DVecH k w x
41 40 19 22 crio class ι j Base Scalar DVecH k w | t ocH k w x v = t + DVecH k w j DVecH k w x
42 18 13 41 cmpt class v Base DVecH k w ι j Base Scalar DVecH k w | t ocH k w x v = t + DVecH k w j DVecH k w x
43 7 17 42 cmpt class x Base DVecH k w 0 DVecH k w v Base DVecH k w ι j Base Scalar DVecH k w | t ocH k w x v = t + DVecH k w j DVecH k w x
44 3 6 43 cmpt class w LHyp k x Base DVecH k w 0 DVecH k w v Base DVecH k w ι j Base Scalar DVecH k w | t ocH k w x v = t + DVecH k w j DVecH k w x
45 1 2 44 cmpt class k V w LHyp k x Base DVecH k w 0 DVecH k w v Base DVecH k w ι j Base Scalar DVecH k w | t ocH k w x v = t + DVecH k w j DVecH k w x
46 0 45 wceq wff HVMap = k V w LHyp k x Base DVecH k w 0 DVecH k w v Base DVecH k w ι j Base Scalar DVecH k w | t ocH k w x v = t + DVecH k w j DVecH k w x