Metamath Proof Explorer


Theorem hdmapevec

Description: Value of map from vectors to functionals at the reference vector E . (Contributed by NM, 16-May-2015)

Ref Expression
Hypotheses hdmapevec.h H = LHyp K
hdmapevec.e E = I Base K I LTrn K W
hdmapevec.j J = HVMap K W
hdmapevec.s S = HDMap K W
hdmapevec.k φ K HL W H
Assertion hdmapevec φ S E = J E

Proof

Step Hyp Ref Expression
1 hdmapevec.h H = LHyp K
2 hdmapevec.e E = I Base K I LTrn K W
3 hdmapevec.j J = HVMap K W
4 hdmapevec.s S = HDMap K W
5 hdmapevec.k φ K HL W H
6 eqid DVecH K W = DVecH K W
7 eqid Base DVecH K W = Base DVecH K W
8 eqid LSpan DVecH K W = LSpan DVecH K W
9 eqid Base K = Base K
10 eqid LTrn K W = LTrn K W
11 eqid 0 DVecH K W = 0 DVecH K W
12 1 9 10 6 7 11 2 5 dvheveccl φ E Base DVecH K W 0 DVecH K W
13 12 eldifad φ E Base DVecH K W
14 1 6 7 8 5 13 dvh2dim φ z Base DVecH K W ¬ z LSpan DVecH K W E
15 5 3ad2ant1 φ z Base DVecH K W ¬ z LSpan DVecH K W E K HL W H
16 eqid LCDual K W = LCDual K W
17 eqid Base LCDual K W = Base LCDual K W
18 eqid HDMap1 K W = HDMap1 K W
19 simp2 φ z Base DVecH K W ¬ z LSpan DVecH K W E z Base DVecH K W
20 ssid LSpan DVecH K W E LSpan DVecH K W E
21 20 20 unssi LSpan DVecH K W E LSpan DVecH K W E LSpan DVecH K W E
22 21 sseli z LSpan DVecH K W E LSpan DVecH K W E z LSpan DVecH K W E
23 22 con3i ¬ z LSpan DVecH K W E ¬ z LSpan DVecH K W E LSpan DVecH K W E
24 23 3ad2ant3 φ z Base DVecH K W ¬ z LSpan DVecH K W E ¬ z LSpan DVecH K W E LSpan DVecH K W E
25 1 2 3 4 15 6 7 8 16 17 18 19 24 hdmapeveclem φ z Base DVecH K W ¬ z LSpan DVecH K W E S E = J E
26 25 rexlimdv3a φ z Base DVecH K W ¬ z LSpan DVecH K W E S E = J E
27 14 26 mpd φ S E = J E