| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmapevec.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | hdmapevec.e |  |-  E = <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. | 
						
							| 3 |  | hdmapevec.j |  |-  J = ( ( HVMap ` K ) ` W ) | 
						
							| 4 |  | hdmapevec.s |  |-  S = ( ( HDMap ` K ) ` W ) | 
						
							| 5 |  | hdmapevec.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 6 |  | eqid |  |-  ( ( DVecH ` K ) ` W ) = ( ( DVecH ` K ) ` W ) | 
						
							| 7 |  | eqid |  |-  ( Base ` ( ( DVecH ` K ) ` W ) ) = ( Base ` ( ( DVecH ` K ) ` W ) ) | 
						
							| 8 |  | eqid |  |-  ( LSpan ` ( ( DVecH ` K ) ` W ) ) = ( LSpan ` ( ( DVecH ` K ) ` W ) ) | 
						
							| 9 |  | eqid |  |-  ( Base ` K ) = ( Base ` K ) | 
						
							| 10 |  | eqid |  |-  ( ( LTrn ` K ) ` W ) = ( ( LTrn ` K ) ` W ) | 
						
							| 11 |  | eqid |  |-  ( 0g ` ( ( DVecH ` K ) ` W ) ) = ( 0g ` ( ( DVecH ` K ) ` W ) ) | 
						
							| 12 | 1 9 10 6 7 11 2 5 | dvheveccl |  |-  ( ph -> E e. ( ( Base ` ( ( DVecH ` K ) ` W ) ) \ { ( 0g ` ( ( DVecH ` K ) ` W ) ) } ) ) | 
						
							| 13 | 12 | eldifad |  |-  ( ph -> E e. ( Base ` ( ( DVecH ` K ) ` W ) ) ) | 
						
							| 14 | 1 6 7 8 5 13 | dvh2dim |  |-  ( ph -> E. z e. ( Base ` ( ( DVecH ` K ) ` W ) ) -. z e. ( ( LSpan ` ( ( DVecH ` K ) ` W ) ) ` { E } ) ) | 
						
							| 15 | 5 | 3ad2ant1 |  |-  ( ( ph /\ z e. ( Base ` ( ( DVecH ` K ) ` W ) ) /\ -. z e. ( ( LSpan ` ( ( DVecH ` K ) ` W ) ) ` { E } ) ) -> ( K e. HL /\ W e. H ) ) | 
						
							| 16 |  | eqid |  |-  ( ( LCDual ` K ) ` W ) = ( ( LCDual ` K ) ` W ) | 
						
							| 17 |  | eqid |  |-  ( Base ` ( ( LCDual ` K ) ` W ) ) = ( Base ` ( ( LCDual ` K ) ` W ) ) | 
						
							| 18 |  | eqid |  |-  ( ( HDMap1 ` K ) ` W ) = ( ( HDMap1 ` K ) ` W ) | 
						
							| 19 |  | simp2 |  |-  ( ( ph /\ z e. ( Base ` ( ( DVecH ` K ) ` W ) ) /\ -. z e. ( ( LSpan ` ( ( DVecH ` K ) ` W ) ) ` { E } ) ) -> z e. ( Base ` ( ( DVecH ` K ) ` W ) ) ) | 
						
							| 20 |  | ssid |  |-  ( ( LSpan ` ( ( DVecH ` K ) ` W ) ) ` { E } ) C_ ( ( LSpan ` ( ( DVecH ` K ) ` W ) ) ` { E } ) | 
						
							| 21 | 20 20 | unssi |  |-  ( ( ( LSpan ` ( ( DVecH ` K ) ` W ) ) ` { E } ) u. ( ( LSpan ` ( ( DVecH ` K ) ` W ) ) ` { E } ) ) C_ ( ( LSpan ` ( ( DVecH ` K ) ` W ) ) ` { E } ) | 
						
							| 22 | 21 | sseli |  |-  ( z e. ( ( ( LSpan ` ( ( DVecH ` K ) ` W ) ) ` { E } ) u. ( ( LSpan ` ( ( DVecH ` K ) ` W ) ) ` { E } ) ) -> z e. ( ( LSpan ` ( ( DVecH ` K ) ` W ) ) ` { E } ) ) | 
						
							| 23 | 22 | con3i |  |-  ( -. z e. ( ( LSpan ` ( ( DVecH ` K ) ` W ) ) ` { E } ) -> -. z e. ( ( ( LSpan ` ( ( DVecH ` K ) ` W ) ) ` { E } ) u. ( ( LSpan ` ( ( DVecH ` K ) ` W ) ) ` { E } ) ) ) | 
						
							| 24 | 23 | 3ad2ant3 |  |-  ( ( ph /\ z e. ( Base ` ( ( DVecH ` K ) ` W ) ) /\ -. z e. ( ( LSpan ` ( ( DVecH ` K ) ` W ) ) ` { E } ) ) -> -. z e. ( ( ( LSpan ` ( ( DVecH ` K ) ` W ) ) ` { E } ) u. ( ( LSpan ` ( ( DVecH ` K ) ` W ) ) ` { E } ) ) ) | 
						
							| 25 | 1 2 3 4 15 6 7 8 16 17 18 19 24 | hdmapeveclem |  |-  ( ( ph /\ z e. ( Base ` ( ( DVecH ` K ) ` W ) ) /\ -. z e. ( ( LSpan ` ( ( DVecH ` K ) ` W ) ) ` { E } ) ) -> ( S ` E ) = ( J ` E ) ) | 
						
							| 26 | 25 | rexlimdv3a |  |-  ( ph -> ( E. z e. ( Base ` ( ( DVecH ` K ) ` W ) ) -. z e. ( ( LSpan ` ( ( DVecH ` K ) ` W ) ) ` { E } ) -> ( S ` E ) = ( J ` E ) ) ) | 
						
							| 27 | 14 26 | mpd |  |-  ( ph -> ( S ` E ) = ( J ` E ) ) |