Step |
Hyp |
Ref |
Expression |
1 |
|
hdmapevec.h |
|- H = ( LHyp ` K ) |
2 |
|
hdmapevec.e |
|- E = <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. |
3 |
|
hdmapevec.j |
|- J = ( ( HVMap ` K ) ` W ) |
4 |
|
hdmapevec.s |
|- S = ( ( HDMap ` K ) ` W ) |
5 |
|
hdmapevec.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
6 |
|
eqid |
|- ( ( DVecH ` K ) ` W ) = ( ( DVecH ` K ) ` W ) |
7 |
|
eqid |
|- ( Base ` ( ( DVecH ` K ) ` W ) ) = ( Base ` ( ( DVecH ` K ) ` W ) ) |
8 |
|
eqid |
|- ( LSpan ` ( ( DVecH ` K ) ` W ) ) = ( LSpan ` ( ( DVecH ` K ) ` W ) ) |
9 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
10 |
|
eqid |
|- ( ( LTrn ` K ) ` W ) = ( ( LTrn ` K ) ` W ) |
11 |
|
eqid |
|- ( 0g ` ( ( DVecH ` K ) ` W ) ) = ( 0g ` ( ( DVecH ` K ) ` W ) ) |
12 |
1 9 10 6 7 11 2 5
|
dvheveccl |
|- ( ph -> E e. ( ( Base ` ( ( DVecH ` K ) ` W ) ) \ { ( 0g ` ( ( DVecH ` K ) ` W ) ) } ) ) |
13 |
12
|
eldifad |
|- ( ph -> E e. ( Base ` ( ( DVecH ` K ) ` W ) ) ) |
14 |
1 6 7 8 5 13
|
dvh2dim |
|- ( ph -> E. z e. ( Base ` ( ( DVecH ` K ) ` W ) ) -. z e. ( ( LSpan ` ( ( DVecH ` K ) ` W ) ) ` { E } ) ) |
15 |
5
|
3ad2ant1 |
|- ( ( ph /\ z e. ( Base ` ( ( DVecH ` K ) ` W ) ) /\ -. z e. ( ( LSpan ` ( ( DVecH ` K ) ` W ) ) ` { E } ) ) -> ( K e. HL /\ W e. H ) ) |
16 |
|
eqid |
|- ( ( LCDual ` K ) ` W ) = ( ( LCDual ` K ) ` W ) |
17 |
|
eqid |
|- ( Base ` ( ( LCDual ` K ) ` W ) ) = ( Base ` ( ( LCDual ` K ) ` W ) ) |
18 |
|
eqid |
|- ( ( HDMap1 ` K ) ` W ) = ( ( HDMap1 ` K ) ` W ) |
19 |
|
simp2 |
|- ( ( ph /\ z e. ( Base ` ( ( DVecH ` K ) ` W ) ) /\ -. z e. ( ( LSpan ` ( ( DVecH ` K ) ` W ) ) ` { E } ) ) -> z e. ( Base ` ( ( DVecH ` K ) ` W ) ) ) |
20 |
|
ssid |
|- ( ( LSpan ` ( ( DVecH ` K ) ` W ) ) ` { E } ) C_ ( ( LSpan ` ( ( DVecH ` K ) ` W ) ) ` { E } ) |
21 |
20 20
|
unssi |
|- ( ( ( LSpan ` ( ( DVecH ` K ) ` W ) ) ` { E } ) u. ( ( LSpan ` ( ( DVecH ` K ) ` W ) ) ` { E } ) ) C_ ( ( LSpan ` ( ( DVecH ` K ) ` W ) ) ` { E } ) |
22 |
21
|
sseli |
|- ( z e. ( ( ( LSpan ` ( ( DVecH ` K ) ` W ) ) ` { E } ) u. ( ( LSpan ` ( ( DVecH ` K ) ` W ) ) ` { E } ) ) -> z e. ( ( LSpan ` ( ( DVecH ` K ) ` W ) ) ` { E } ) ) |
23 |
22
|
con3i |
|- ( -. z e. ( ( LSpan ` ( ( DVecH ` K ) ` W ) ) ` { E } ) -> -. z e. ( ( ( LSpan ` ( ( DVecH ` K ) ` W ) ) ` { E } ) u. ( ( LSpan ` ( ( DVecH ` K ) ` W ) ) ` { E } ) ) ) |
24 |
23
|
3ad2ant3 |
|- ( ( ph /\ z e. ( Base ` ( ( DVecH ` K ) ` W ) ) /\ -. z e. ( ( LSpan ` ( ( DVecH ` K ) ` W ) ) ` { E } ) ) -> -. z e. ( ( ( LSpan ` ( ( DVecH ` K ) ` W ) ) ` { E } ) u. ( ( LSpan ` ( ( DVecH ` K ) ` W ) ) ` { E } ) ) ) |
25 |
1 2 3 4 15 6 7 8 16 17 18 19 24
|
hdmapeveclem |
|- ( ( ph /\ z e. ( Base ` ( ( DVecH ` K ) ` W ) ) /\ -. z e. ( ( LSpan ` ( ( DVecH ` K ) ` W ) ) ` { E } ) ) -> ( S ` E ) = ( J ` E ) ) |
26 |
25
|
rexlimdv3a |
|- ( ph -> ( E. z e. ( Base ` ( ( DVecH ` K ) ` W ) ) -. z e. ( ( LSpan ` ( ( DVecH ` K ) ` W ) ) ` { E } ) -> ( S ` E ) = ( J ` E ) ) ) |
27 |
14 26
|
mpd |
|- ( ph -> ( S ` E ) = ( J ` E ) ) |