| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmapevec.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | hdmapevec.e | ⊢ 𝐸  =  〈 (  I   ↾  ( Base ‘ 𝐾 ) ) ,  (  I   ↾  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 | 
						
							| 3 |  | hdmapevec.j | ⊢ 𝐽  =  ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 4 |  | hdmapevec.s | ⊢ 𝑆  =  ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 5 |  | hdmapevec.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 6 |  | eqid | ⊢ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 7 |  | eqid | ⊢ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) )  =  ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 8 |  | eqid | ⊢ ( LSpan ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) )  =  ( LSpan ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 9 |  | eqid | ⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 ) | 
						
							| 10 |  | eqid | ⊢ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )  =  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 11 |  | eqid | ⊢ ( 0g ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) )  =  ( 0g ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 12 | 1 9 10 6 7 11 2 5 | dvheveccl | ⊢ ( 𝜑  →  𝐸  ∈  ( ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) )  ∖  { ( 0g ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) } ) ) | 
						
							| 13 | 12 | eldifad | ⊢ ( 𝜑  →  𝐸  ∈  ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) | 
						
							| 14 | 1 6 7 8 5 13 | dvh2dim | ⊢ ( 𝜑  →  ∃ 𝑧  ∈  ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ¬  𝑧  ∈  ( ( LSpan ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ { 𝐸 } ) ) | 
						
							| 15 | 5 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) )  ∧  ¬  𝑧  ∈  ( ( LSpan ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ { 𝐸 } ) )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 16 |  | eqid | ⊢ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )  =  ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 17 |  | eqid | ⊢ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) )  =  ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 18 |  | eqid | ⊢ ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 )  =  ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 19 |  | simp2 | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) )  ∧  ¬  𝑧  ∈  ( ( LSpan ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ { 𝐸 } ) )  →  𝑧  ∈  ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) | 
						
							| 20 |  | ssid | ⊢ ( ( LSpan ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ { 𝐸 } )  ⊆  ( ( LSpan ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ { 𝐸 } ) | 
						
							| 21 | 20 20 | unssi | ⊢ ( ( ( LSpan ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ { 𝐸 } )  ∪  ( ( LSpan ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ { 𝐸 } ) )  ⊆  ( ( LSpan ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ { 𝐸 } ) | 
						
							| 22 | 21 | sseli | ⊢ ( 𝑧  ∈  ( ( ( LSpan ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ { 𝐸 } )  ∪  ( ( LSpan ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ { 𝐸 } ) )  →  𝑧  ∈  ( ( LSpan ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ { 𝐸 } ) ) | 
						
							| 23 | 22 | con3i | ⊢ ( ¬  𝑧  ∈  ( ( LSpan ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ { 𝐸 } )  →  ¬  𝑧  ∈  ( ( ( LSpan ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ { 𝐸 } )  ∪  ( ( LSpan ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ { 𝐸 } ) ) ) | 
						
							| 24 | 23 | 3ad2ant3 | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) )  ∧  ¬  𝑧  ∈  ( ( LSpan ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ { 𝐸 } ) )  →  ¬  𝑧  ∈  ( ( ( LSpan ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ { 𝐸 } )  ∪  ( ( LSpan ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ { 𝐸 } ) ) ) | 
						
							| 25 | 1 2 3 4 15 6 7 8 16 17 18 19 24 | hdmapeveclem | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) )  ∧  ¬  𝑧  ∈  ( ( LSpan ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ { 𝐸 } ) )  →  ( 𝑆 ‘ 𝐸 )  =  ( 𝐽 ‘ 𝐸 ) ) | 
						
							| 26 | 25 | rexlimdv3a | ⊢ ( 𝜑  →  ( ∃ 𝑧  ∈  ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ¬  𝑧  ∈  ( ( LSpan ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ { 𝐸 } )  →  ( 𝑆 ‘ 𝐸 )  =  ( 𝐽 ‘ 𝐸 ) ) ) | 
						
							| 27 | 14 26 | mpd | ⊢ ( 𝜑  →  ( 𝑆 ‘ 𝐸 )  =  ( 𝐽 ‘ 𝐸 ) ) |