Step |
Hyp |
Ref |
Expression |
1 |
|
hdmapevec.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
hdmapevec.e |
⊢ 𝐸 = 〈 ( I ↾ ( Base ‘ 𝐾 ) ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 |
3 |
|
hdmapevec.j |
⊢ 𝐽 = ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
hdmapevec.s |
⊢ 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
hdmapevec.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
6 |
|
eqid |
⊢ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
7 |
|
eqid |
⊢ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) = ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) |
8 |
|
eqid |
⊢ ( LSpan ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) = ( LSpan ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) |
9 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
10 |
|
eqid |
⊢ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
11 |
|
eqid |
⊢ ( 0g ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) = ( 0g ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) |
12 |
1 9 10 6 7 11 2 5
|
dvheveccl |
⊢ ( 𝜑 → 𝐸 ∈ ( ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) } ) ) |
13 |
12
|
eldifad |
⊢ ( 𝜑 → 𝐸 ∈ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
14 |
1 6 7 8 5 13
|
dvh2dim |
⊢ ( 𝜑 → ∃ 𝑧 ∈ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ¬ 𝑧 ∈ ( ( LSpan ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ { 𝐸 } ) ) |
15 |
5
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ∧ ¬ 𝑧 ∈ ( ( LSpan ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ { 𝐸 } ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
16 |
|
eqid |
⊢ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
17 |
|
eqid |
⊢ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) = ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) |
18 |
|
eqid |
⊢ ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 ) = ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 ) |
19 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ∧ ¬ 𝑧 ∈ ( ( LSpan ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ { 𝐸 } ) ) → 𝑧 ∈ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
20 |
|
ssid |
⊢ ( ( LSpan ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ { 𝐸 } ) ⊆ ( ( LSpan ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ { 𝐸 } ) |
21 |
20 20
|
unssi |
⊢ ( ( ( LSpan ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ { 𝐸 } ) ∪ ( ( LSpan ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ { 𝐸 } ) ) ⊆ ( ( LSpan ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ { 𝐸 } ) |
22 |
21
|
sseli |
⊢ ( 𝑧 ∈ ( ( ( LSpan ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ { 𝐸 } ) ∪ ( ( LSpan ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ { 𝐸 } ) ) → 𝑧 ∈ ( ( LSpan ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ { 𝐸 } ) ) |
23 |
22
|
con3i |
⊢ ( ¬ 𝑧 ∈ ( ( LSpan ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ { 𝐸 } ) → ¬ 𝑧 ∈ ( ( ( LSpan ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ { 𝐸 } ) ∪ ( ( LSpan ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ { 𝐸 } ) ) ) |
24 |
23
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ∧ ¬ 𝑧 ∈ ( ( LSpan ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ { 𝐸 } ) ) → ¬ 𝑧 ∈ ( ( ( LSpan ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ { 𝐸 } ) ∪ ( ( LSpan ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ { 𝐸 } ) ) ) |
25 |
1 2 3 4 15 6 7 8 16 17 18 19 24
|
hdmapeveclem |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ∧ ¬ 𝑧 ∈ ( ( LSpan ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ { 𝐸 } ) ) → ( 𝑆 ‘ 𝐸 ) = ( 𝐽 ‘ 𝐸 ) ) |
26 |
25
|
rexlimdv3a |
⊢ ( 𝜑 → ( ∃ 𝑧 ∈ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ¬ 𝑧 ∈ ( ( LSpan ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ { 𝐸 } ) → ( 𝑆 ‘ 𝐸 ) = ( 𝐽 ‘ 𝐸 ) ) ) |
27 |
14 26
|
mpd |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝐸 ) = ( 𝐽 ‘ 𝐸 ) ) |