Metamath Proof Explorer


Theorem hdmapevec

Description: Value of map from vectors to functionals at the reference vector E . (Contributed by NM, 16-May-2015)

Ref Expression
Hypotheses hdmapevec.h 𝐻 = ( LHyp ‘ 𝐾 )
hdmapevec.e 𝐸 = ⟨ ( I ↾ ( Base ‘ 𝐾 ) ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) ⟩
hdmapevec.j 𝐽 = ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 )
hdmapevec.s 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 )
hdmapevec.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
Assertion hdmapevec ( 𝜑 → ( 𝑆𝐸 ) = ( 𝐽𝐸 ) )

Proof

Step Hyp Ref Expression
1 hdmapevec.h 𝐻 = ( LHyp ‘ 𝐾 )
2 hdmapevec.e 𝐸 = ⟨ ( I ↾ ( Base ‘ 𝐾 ) ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) ⟩
3 hdmapevec.j 𝐽 = ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 )
4 hdmapevec.s 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 )
5 hdmapevec.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
6 eqid ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
7 eqid ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) = ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) )
8 eqid ( LSpan ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) = ( LSpan ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) )
9 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
10 eqid ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
11 eqid ( 0g ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) = ( 0g ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) )
12 1 9 10 6 7 11 2 5 dvheveccl ( 𝜑𝐸 ∈ ( ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) } ) )
13 12 eldifad ( 𝜑𝐸 ∈ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) )
14 1 6 7 8 5 13 dvh2dim ( 𝜑 → ∃ 𝑧 ∈ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ¬ 𝑧 ∈ ( ( LSpan ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ { 𝐸 } ) )
15 5 3ad2ant1 ( ( 𝜑𝑧 ∈ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ∧ ¬ 𝑧 ∈ ( ( LSpan ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ { 𝐸 } ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
16 eqid ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
17 eqid ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) = ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) )
18 eqid ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 ) = ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 )
19 simp2 ( ( 𝜑𝑧 ∈ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ∧ ¬ 𝑧 ∈ ( ( LSpan ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ { 𝐸 } ) ) → 𝑧 ∈ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) )
20 ssid ( ( LSpan ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ { 𝐸 } ) ⊆ ( ( LSpan ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ { 𝐸 } )
21 20 20 unssi ( ( ( LSpan ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ { 𝐸 } ) ∪ ( ( LSpan ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ { 𝐸 } ) ) ⊆ ( ( LSpan ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ { 𝐸 } )
22 21 sseli ( 𝑧 ∈ ( ( ( LSpan ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ { 𝐸 } ) ∪ ( ( LSpan ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ { 𝐸 } ) ) → 𝑧 ∈ ( ( LSpan ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ { 𝐸 } ) )
23 22 con3i ( ¬ 𝑧 ∈ ( ( LSpan ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ { 𝐸 } ) → ¬ 𝑧 ∈ ( ( ( LSpan ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ { 𝐸 } ) ∪ ( ( LSpan ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ { 𝐸 } ) ) )
24 23 3ad2ant3 ( ( 𝜑𝑧 ∈ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ∧ ¬ 𝑧 ∈ ( ( LSpan ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ { 𝐸 } ) ) → ¬ 𝑧 ∈ ( ( ( LSpan ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ { 𝐸 } ) ∪ ( ( LSpan ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ { 𝐸 } ) ) )
25 1 2 3 4 15 6 7 8 16 17 18 19 24 hdmapeveclem ( ( 𝜑𝑧 ∈ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ∧ ¬ 𝑧 ∈ ( ( LSpan ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ { 𝐸 } ) ) → ( 𝑆𝐸 ) = ( 𝐽𝐸 ) )
26 25 rexlimdv3a ( 𝜑 → ( ∃ 𝑧 ∈ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ¬ 𝑧 ∈ ( ( LSpan ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ { 𝐸 } ) → ( 𝑆𝐸 ) = ( 𝐽𝐸 ) ) )
27 14 26 mpd ( 𝜑 → ( 𝑆𝐸 ) = ( 𝐽𝐸 ) )