Metamath Proof Explorer


Theorem hdmapevec2

Description: The inner product of the reference vector E with itself is nonzero. This shows the inner product condition in the proof of Theorem 3.6 of Holland95 p. 14 line 32, [ e , e ] =/= 0 is satisfied. TODO: remove redundant hypothesis hdmapevec.j. (Contributed by NM, 1-Jun-2015)

Ref Expression
Hypotheses hdmapevec.h 𝐻 = ( LHyp ‘ 𝐾 )
hdmapevec.e 𝐸 = ⟨ ( I ↾ ( Base ‘ 𝐾 ) ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) ⟩
hdmapevec.j 𝐽 = ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 )
hdmapevec.s 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 )
hdmapevec.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
hdmapevec2.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
hdmapevec2.r 𝑅 = ( Scalar ‘ 𝑈 )
hdmapevec2.i 1 = ( 1r𝑅 )
Assertion hdmapevec2 ( 𝜑 → ( ( 𝑆𝐸 ) ‘ 𝐸 ) = 1 )

Proof

Step Hyp Ref Expression
1 hdmapevec.h 𝐻 = ( LHyp ‘ 𝐾 )
2 hdmapevec.e 𝐸 = ⟨ ( I ↾ ( Base ‘ 𝐾 ) ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) ⟩
3 hdmapevec.j 𝐽 = ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 )
4 hdmapevec.s 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 )
5 hdmapevec.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
6 hdmapevec2.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
7 hdmapevec2.r 𝑅 = ( Scalar ‘ 𝑈 )
8 hdmapevec2.i 1 = ( 1r𝑅 )
9 1 2 3 4 5 hdmapevec ( 𝜑 → ( 𝑆𝐸 ) = ( 𝐽𝐸 ) )
10 eqid ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
11 eqid ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 )
12 eqid ( +g𝑈 ) = ( +g𝑈 )
13 eqid ( ·𝑠𝑈 ) = ( ·𝑠𝑈 )
14 eqid ( 0g𝑈 ) = ( 0g𝑈 )
15 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
16 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
17 eqid ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
18 1 16 17 6 11 14 2 5 dvheveccl ( 𝜑𝐸 ∈ ( ( Base ‘ 𝑈 ) ∖ { ( 0g𝑈 ) } ) )
19 1 6 10 11 12 13 14 7 15 3 5 18 hvmapval ( 𝜑 → ( 𝐽𝐸 ) = ( 𝑣 ∈ ( Base ‘ 𝑈 ) ↦ ( 𝑘 ∈ ( Base ‘ 𝑅 ) ∃ 𝑤 ∈ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ { 𝐸 } ) 𝑣 = ( 𝑤 ( +g𝑈 ) ( 𝑘 ( ·𝑠𝑈 ) 𝐸 ) ) ) ) )
20 9 19 eqtrd ( 𝜑 → ( 𝑆𝐸 ) = ( 𝑣 ∈ ( Base ‘ 𝑈 ) ↦ ( 𝑘 ∈ ( Base ‘ 𝑅 ) ∃ 𝑤 ∈ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ { 𝐸 } ) 𝑣 = ( 𝑤 ( +g𝑈 ) ( 𝑘 ( ·𝑠𝑈 ) 𝐸 ) ) ) ) )
21 20 fveq1d ( 𝜑 → ( ( 𝑆𝐸 ) ‘ 𝐸 ) = ( ( 𝑣 ∈ ( Base ‘ 𝑈 ) ↦ ( 𝑘 ∈ ( Base ‘ 𝑅 ) ∃ 𝑤 ∈ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ { 𝐸 } ) 𝑣 = ( 𝑤 ( +g𝑈 ) ( 𝑘 ( ·𝑠𝑈 ) 𝐸 ) ) ) ) ‘ 𝐸 ) )
22 eqid ( 𝑣 ∈ ( Base ‘ 𝑈 ) ↦ ( 𝑘 ∈ ( Base ‘ 𝑅 ) ∃ 𝑤 ∈ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ { 𝐸 } ) 𝑣 = ( 𝑤 ( +g𝑈 ) ( 𝑘 ( ·𝑠𝑈 ) 𝐸 ) ) ) ) = ( 𝑣 ∈ ( Base ‘ 𝑈 ) ↦ ( 𝑘 ∈ ( Base ‘ 𝑅 ) ∃ 𝑤 ∈ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ { 𝐸 } ) 𝑣 = ( 𝑤 ( +g𝑈 ) ( 𝑘 ( ·𝑠𝑈 ) 𝐸 ) ) ) )
23 1 10 6 11 12 13 14 7 15 8 5 18 22 dochfl1 ( 𝜑 → ( ( 𝑣 ∈ ( Base ‘ 𝑈 ) ↦ ( 𝑘 ∈ ( Base ‘ 𝑅 ) ∃ 𝑤 ∈ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ { 𝐸 } ) 𝑣 = ( 𝑤 ( +g𝑈 ) ( 𝑘 ( ·𝑠𝑈 ) 𝐸 ) ) ) ) ‘ 𝐸 ) = 1 )
24 21 23 eqtrd ( 𝜑 → ( ( 𝑆𝐸 ) ‘ 𝐸 ) = 1 )