| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmapevec.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | hdmapevec.e | ⊢ 𝐸  =  〈 (  I   ↾  ( Base ‘ 𝐾 ) ) ,  (  I   ↾  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 | 
						
							| 3 |  | hdmapevec.j | ⊢ 𝐽  =  ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 4 |  | hdmapevec.s | ⊢ 𝑆  =  ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 5 |  | hdmapevec.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 6 |  | hdmapevec2.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 7 |  | hdmapevec2.r | ⊢ 𝑅  =  ( Scalar ‘ 𝑈 ) | 
						
							| 8 |  | hdmapevec2.i | ⊢  1   =  ( 1r ‘ 𝑅 ) | 
						
							| 9 | 1 2 3 4 5 | hdmapevec | ⊢ ( 𝜑  →  ( 𝑆 ‘ 𝐸 )  =  ( 𝐽 ‘ 𝐸 ) ) | 
						
							| 10 |  | eqid | ⊢ ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )  =  ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 11 |  | eqid | ⊢ ( Base ‘ 𝑈 )  =  ( Base ‘ 𝑈 ) | 
						
							| 12 |  | eqid | ⊢ ( +g ‘ 𝑈 )  =  ( +g ‘ 𝑈 ) | 
						
							| 13 |  | eqid | ⊢ (  ·𝑠  ‘ 𝑈 )  =  (  ·𝑠  ‘ 𝑈 ) | 
						
							| 14 |  | eqid | ⊢ ( 0g ‘ 𝑈 )  =  ( 0g ‘ 𝑈 ) | 
						
							| 15 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 16 |  | eqid | ⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 ) | 
						
							| 17 |  | eqid | ⊢ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )  =  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 18 | 1 16 17 6 11 14 2 5 | dvheveccl | ⊢ ( 𝜑  →  𝐸  ∈  ( ( Base ‘ 𝑈 )  ∖  { ( 0g ‘ 𝑈 ) } ) ) | 
						
							| 19 | 1 6 10 11 12 13 14 7 15 3 5 18 | hvmapval | ⊢ ( 𝜑  →  ( 𝐽 ‘ 𝐸 )  =  ( 𝑣  ∈  ( Base ‘ 𝑈 )  ↦  ( ℩ 𝑘  ∈  ( Base ‘ 𝑅 ) ∃ 𝑤  ∈  ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ { 𝐸 } ) 𝑣  =  ( 𝑤 ( +g ‘ 𝑈 ) ( 𝑘 (  ·𝑠  ‘ 𝑈 ) 𝐸 ) ) ) ) ) | 
						
							| 20 | 9 19 | eqtrd | ⊢ ( 𝜑  →  ( 𝑆 ‘ 𝐸 )  =  ( 𝑣  ∈  ( Base ‘ 𝑈 )  ↦  ( ℩ 𝑘  ∈  ( Base ‘ 𝑅 ) ∃ 𝑤  ∈  ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ { 𝐸 } ) 𝑣  =  ( 𝑤 ( +g ‘ 𝑈 ) ( 𝑘 (  ·𝑠  ‘ 𝑈 ) 𝐸 ) ) ) ) ) | 
						
							| 21 | 20 | fveq1d | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ 𝐸 ) ‘ 𝐸 )  =  ( ( 𝑣  ∈  ( Base ‘ 𝑈 )  ↦  ( ℩ 𝑘  ∈  ( Base ‘ 𝑅 ) ∃ 𝑤  ∈  ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ { 𝐸 } ) 𝑣  =  ( 𝑤 ( +g ‘ 𝑈 ) ( 𝑘 (  ·𝑠  ‘ 𝑈 ) 𝐸 ) ) ) ) ‘ 𝐸 ) ) | 
						
							| 22 |  | eqid | ⊢ ( 𝑣  ∈  ( Base ‘ 𝑈 )  ↦  ( ℩ 𝑘  ∈  ( Base ‘ 𝑅 ) ∃ 𝑤  ∈  ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ { 𝐸 } ) 𝑣  =  ( 𝑤 ( +g ‘ 𝑈 ) ( 𝑘 (  ·𝑠  ‘ 𝑈 ) 𝐸 ) ) ) )  =  ( 𝑣  ∈  ( Base ‘ 𝑈 )  ↦  ( ℩ 𝑘  ∈  ( Base ‘ 𝑅 ) ∃ 𝑤  ∈  ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ { 𝐸 } ) 𝑣  =  ( 𝑤 ( +g ‘ 𝑈 ) ( 𝑘 (  ·𝑠  ‘ 𝑈 ) 𝐸 ) ) ) ) | 
						
							| 23 | 1 10 6 11 12 13 14 7 15 8 5 18 22 | dochfl1 | ⊢ ( 𝜑  →  ( ( 𝑣  ∈  ( Base ‘ 𝑈 )  ↦  ( ℩ 𝑘  ∈  ( Base ‘ 𝑅 ) ∃ 𝑤  ∈  ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ { 𝐸 } ) 𝑣  =  ( 𝑤 ( +g ‘ 𝑈 ) ( 𝑘 (  ·𝑠  ‘ 𝑈 ) 𝐸 ) ) ) ) ‘ 𝐸 )  =   1  ) | 
						
							| 24 | 21 23 | eqtrd | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ 𝐸 ) ‘ 𝐸 )  =   1  ) |