Step |
Hyp |
Ref |
Expression |
1 |
|
hdmapevec.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
hdmapevec.e |
⊢ 𝐸 = 〈 ( I ↾ ( Base ‘ 𝐾 ) ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 |
3 |
|
hdmapevec.j |
⊢ 𝐽 = ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
hdmapevec.s |
⊢ 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
hdmapevec.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
6 |
|
hdmapevec2.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
7 |
|
hdmapevec2.r |
⊢ 𝑅 = ( Scalar ‘ 𝑈 ) |
8 |
|
hdmapevec2.i |
⊢ 1 = ( 1r ‘ 𝑅 ) |
9 |
1 2 3 4 5
|
hdmapevec |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝐸 ) = ( 𝐽 ‘ 𝐸 ) ) |
10 |
|
eqid |
⊢ ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
11 |
|
eqid |
⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) |
12 |
|
eqid |
⊢ ( +g ‘ 𝑈 ) = ( +g ‘ 𝑈 ) |
13 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑈 ) = ( ·𝑠 ‘ 𝑈 ) |
14 |
|
eqid |
⊢ ( 0g ‘ 𝑈 ) = ( 0g ‘ 𝑈 ) |
15 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
16 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
17 |
|
eqid |
⊢ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
18 |
1 16 17 6 11 14 2 5
|
dvheveccl |
⊢ ( 𝜑 → 𝐸 ∈ ( ( Base ‘ 𝑈 ) ∖ { ( 0g ‘ 𝑈 ) } ) ) |
19 |
1 6 10 11 12 13 14 7 15 3 5 18
|
hvmapval |
⊢ ( 𝜑 → ( 𝐽 ‘ 𝐸 ) = ( 𝑣 ∈ ( Base ‘ 𝑈 ) ↦ ( ℩ 𝑘 ∈ ( Base ‘ 𝑅 ) ∃ 𝑤 ∈ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ { 𝐸 } ) 𝑣 = ( 𝑤 ( +g ‘ 𝑈 ) ( 𝑘 ( ·𝑠 ‘ 𝑈 ) 𝐸 ) ) ) ) ) |
20 |
9 19
|
eqtrd |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝐸 ) = ( 𝑣 ∈ ( Base ‘ 𝑈 ) ↦ ( ℩ 𝑘 ∈ ( Base ‘ 𝑅 ) ∃ 𝑤 ∈ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ { 𝐸 } ) 𝑣 = ( 𝑤 ( +g ‘ 𝑈 ) ( 𝑘 ( ·𝑠 ‘ 𝑈 ) 𝐸 ) ) ) ) ) |
21 |
20
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝐸 ) ‘ 𝐸 ) = ( ( 𝑣 ∈ ( Base ‘ 𝑈 ) ↦ ( ℩ 𝑘 ∈ ( Base ‘ 𝑅 ) ∃ 𝑤 ∈ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ { 𝐸 } ) 𝑣 = ( 𝑤 ( +g ‘ 𝑈 ) ( 𝑘 ( ·𝑠 ‘ 𝑈 ) 𝐸 ) ) ) ) ‘ 𝐸 ) ) |
22 |
|
eqid |
⊢ ( 𝑣 ∈ ( Base ‘ 𝑈 ) ↦ ( ℩ 𝑘 ∈ ( Base ‘ 𝑅 ) ∃ 𝑤 ∈ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ { 𝐸 } ) 𝑣 = ( 𝑤 ( +g ‘ 𝑈 ) ( 𝑘 ( ·𝑠 ‘ 𝑈 ) 𝐸 ) ) ) ) = ( 𝑣 ∈ ( Base ‘ 𝑈 ) ↦ ( ℩ 𝑘 ∈ ( Base ‘ 𝑅 ) ∃ 𝑤 ∈ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ { 𝐸 } ) 𝑣 = ( 𝑤 ( +g ‘ 𝑈 ) ( 𝑘 ( ·𝑠 ‘ 𝑈 ) 𝐸 ) ) ) ) |
23 |
1 10 6 11 12 13 14 7 15 8 5 18 22
|
dochfl1 |
⊢ ( 𝜑 → ( ( 𝑣 ∈ ( Base ‘ 𝑈 ) ↦ ( ℩ 𝑘 ∈ ( Base ‘ 𝑅 ) ∃ 𝑤 ∈ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ { 𝐸 } ) 𝑣 = ( 𝑤 ( +g ‘ 𝑈 ) ( 𝑘 ( ·𝑠 ‘ 𝑈 ) 𝐸 ) ) ) ) ‘ 𝐸 ) = 1 ) |
24 |
21 23
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝐸 ) ‘ 𝐸 ) = 1 ) |