Step |
Hyp |
Ref |
Expression |
1 |
|
hvmapval.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
hvmapval.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
hvmapval.o |
⊢ 𝑂 = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
hvmapval.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
5 |
|
hvmapval.p |
⊢ + = ( +g ‘ 𝑈 ) |
6 |
|
hvmapval.t |
⊢ · = ( ·𝑠 ‘ 𝑈 ) |
7 |
|
hvmapval.z |
⊢ 0 = ( 0g ‘ 𝑈 ) |
8 |
|
hvmapval.s |
⊢ 𝑆 = ( Scalar ‘ 𝑈 ) |
9 |
|
hvmapval.r |
⊢ 𝑅 = ( Base ‘ 𝑆 ) |
10 |
|
hvmapval.m |
⊢ 𝑀 = ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) |
11 |
|
hvmapval.k |
⊢ ( 𝜑 → ( 𝐾 ∈ 𝐴 ∧ 𝑊 ∈ 𝐻 ) ) |
12 |
|
hvmapval.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
13 |
1 2 3 4 5 6 7 8 9 10 11
|
hvmapfval |
⊢ ( 𝜑 → 𝑀 = ( 𝑥 ∈ ( 𝑉 ∖ { 0 } ) ↦ ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑗 ∈ 𝑅 ∃ 𝑡 ∈ ( 𝑂 ‘ { 𝑥 } ) 𝑣 = ( 𝑡 + ( 𝑗 · 𝑥 ) ) ) ) ) ) |
14 |
13
|
fveq1d |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝑋 ) = ( ( 𝑥 ∈ ( 𝑉 ∖ { 0 } ) ↦ ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑗 ∈ 𝑅 ∃ 𝑡 ∈ ( 𝑂 ‘ { 𝑥 } ) 𝑣 = ( 𝑡 + ( 𝑗 · 𝑥 ) ) ) ) ) ‘ 𝑋 ) ) |
15 |
4
|
fvexi |
⊢ 𝑉 ∈ V |
16 |
15
|
mptex |
⊢ ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑗 ∈ 𝑅 ∃ 𝑡 ∈ ( 𝑂 ‘ { 𝑋 } ) 𝑣 = ( 𝑡 + ( 𝑗 · 𝑋 ) ) ) ) ∈ V |
17 |
|
sneq |
⊢ ( 𝑥 = 𝑋 → { 𝑥 } = { 𝑋 } ) |
18 |
17
|
fveq2d |
⊢ ( 𝑥 = 𝑋 → ( 𝑂 ‘ { 𝑥 } ) = ( 𝑂 ‘ { 𝑋 } ) ) |
19 |
|
oveq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝑗 · 𝑥 ) = ( 𝑗 · 𝑋 ) ) |
20 |
19
|
oveq2d |
⊢ ( 𝑥 = 𝑋 → ( 𝑡 + ( 𝑗 · 𝑥 ) ) = ( 𝑡 + ( 𝑗 · 𝑋 ) ) ) |
21 |
20
|
eqeq2d |
⊢ ( 𝑥 = 𝑋 → ( 𝑣 = ( 𝑡 + ( 𝑗 · 𝑥 ) ) ↔ 𝑣 = ( 𝑡 + ( 𝑗 · 𝑋 ) ) ) ) |
22 |
18 21
|
rexeqbidv |
⊢ ( 𝑥 = 𝑋 → ( ∃ 𝑡 ∈ ( 𝑂 ‘ { 𝑥 } ) 𝑣 = ( 𝑡 + ( 𝑗 · 𝑥 ) ) ↔ ∃ 𝑡 ∈ ( 𝑂 ‘ { 𝑋 } ) 𝑣 = ( 𝑡 + ( 𝑗 · 𝑋 ) ) ) ) |
23 |
22
|
riotabidv |
⊢ ( 𝑥 = 𝑋 → ( ℩ 𝑗 ∈ 𝑅 ∃ 𝑡 ∈ ( 𝑂 ‘ { 𝑥 } ) 𝑣 = ( 𝑡 + ( 𝑗 · 𝑥 ) ) ) = ( ℩ 𝑗 ∈ 𝑅 ∃ 𝑡 ∈ ( 𝑂 ‘ { 𝑋 } ) 𝑣 = ( 𝑡 + ( 𝑗 · 𝑋 ) ) ) ) |
24 |
23
|
mpteq2dv |
⊢ ( 𝑥 = 𝑋 → ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑗 ∈ 𝑅 ∃ 𝑡 ∈ ( 𝑂 ‘ { 𝑥 } ) 𝑣 = ( 𝑡 + ( 𝑗 · 𝑥 ) ) ) ) = ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑗 ∈ 𝑅 ∃ 𝑡 ∈ ( 𝑂 ‘ { 𝑋 } ) 𝑣 = ( 𝑡 + ( 𝑗 · 𝑋 ) ) ) ) ) |
25 |
|
eqid |
⊢ ( 𝑥 ∈ ( 𝑉 ∖ { 0 } ) ↦ ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑗 ∈ 𝑅 ∃ 𝑡 ∈ ( 𝑂 ‘ { 𝑥 } ) 𝑣 = ( 𝑡 + ( 𝑗 · 𝑥 ) ) ) ) ) = ( 𝑥 ∈ ( 𝑉 ∖ { 0 } ) ↦ ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑗 ∈ 𝑅 ∃ 𝑡 ∈ ( 𝑂 ‘ { 𝑥 } ) 𝑣 = ( 𝑡 + ( 𝑗 · 𝑥 ) ) ) ) ) |
26 |
24 25
|
fvmptg |
⊢ ( ( 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ∧ ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑗 ∈ 𝑅 ∃ 𝑡 ∈ ( 𝑂 ‘ { 𝑋 } ) 𝑣 = ( 𝑡 + ( 𝑗 · 𝑋 ) ) ) ) ∈ V ) → ( ( 𝑥 ∈ ( 𝑉 ∖ { 0 } ) ↦ ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑗 ∈ 𝑅 ∃ 𝑡 ∈ ( 𝑂 ‘ { 𝑥 } ) 𝑣 = ( 𝑡 + ( 𝑗 · 𝑥 ) ) ) ) ) ‘ 𝑋 ) = ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑗 ∈ 𝑅 ∃ 𝑡 ∈ ( 𝑂 ‘ { 𝑋 } ) 𝑣 = ( 𝑡 + ( 𝑗 · 𝑋 ) ) ) ) ) |
27 |
12 16 26
|
sylancl |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 𝑉 ∖ { 0 } ) ↦ ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑗 ∈ 𝑅 ∃ 𝑡 ∈ ( 𝑂 ‘ { 𝑥 } ) 𝑣 = ( 𝑡 + ( 𝑗 · 𝑥 ) ) ) ) ) ‘ 𝑋 ) = ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑗 ∈ 𝑅 ∃ 𝑡 ∈ ( 𝑂 ‘ { 𝑋 } ) 𝑣 = ( 𝑡 + ( 𝑗 · 𝑋 ) ) ) ) ) |
28 |
14 27
|
eqtrd |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝑋 ) = ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑗 ∈ 𝑅 ∃ 𝑡 ∈ ( 𝑂 ‘ { 𝑋 } ) 𝑣 = ( 𝑡 + ( 𝑗 · 𝑋 ) ) ) ) ) |