Step |
Hyp |
Ref |
Expression |
1 |
|
hvmapval.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
hvmapval.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
hvmapval.o |
⊢ 𝑂 = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
hvmapval.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
5 |
|
hvmapval.p |
⊢ + = ( +g ‘ 𝑈 ) |
6 |
|
hvmapval.t |
⊢ · = ( ·𝑠 ‘ 𝑈 ) |
7 |
|
hvmapval.z |
⊢ 0 = ( 0g ‘ 𝑈 ) |
8 |
|
hvmapval.s |
⊢ 𝑆 = ( Scalar ‘ 𝑈 ) |
9 |
|
hvmapval.r |
⊢ 𝑅 = ( Base ‘ 𝑆 ) |
10 |
|
hvmapval.m |
⊢ 𝑀 = ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) |
11 |
|
hvmapval.k |
⊢ ( 𝜑 → ( 𝐾 ∈ 𝐴 ∧ 𝑊 ∈ 𝐻 ) ) |
12 |
|
hvmapval.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
13 |
|
hvmapval.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
14 |
1 2 3 4 5 6 7 8 9 10 11 12
|
hvmapval |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝑋 ) = ( 𝑦 ∈ 𝑉 ↦ ( ℩ 𝑗 ∈ 𝑅 ∃ 𝑡 ∈ ( 𝑂 ‘ { 𝑋 } ) 𝑦 = ( 𝑡 + ( 𝑗 · 𝑋 ) ) ) ) ) |
15 |
14
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝑋 ) ‘ 𝑌 ) = ( ( 𝑦 ∈ 𝑉 ↦ ( ℩ 𝑗 ∈ 𝑅 ∃ 𝑡 ∈ ( 𝑂 ‘ { 𝑋 } ) 𝑦 = ( 𝑡 + ( 𝑗 · 𝑋 ) ) ) ) ‘ 𝑌 ) ) |
16 |
|
riotaex |
⊢ ( ℩ 𝑗 ∈ 𝑅 ∃ 𝑡 ∈ ( 𝑂 ‘ { 𝑋 } ) 𝑌 = ( 𝑡 + ( 𝑗 · 𝑋 ) ) ) ∈ V |
17 |
|
eqeq1 |
⊢ ( 𝑦 = 𝑌 → ( 𝑦 = ( 𝑡 + ( 𝑗 · 𝑋 ) ) ↔ 𝑌 = ( 𝑡 + ( 𝑗 · 𝑋 ) ) ) ) |
18 |
17
|
rexbidv |
⊢ ( 𝑦 = 𝑌 → ( ∃ 𝑡 ∈ ( 𝑂 ‘ { 𝑋 } ) 𝑦 = ( 𝑡 + ( 𝑗 · 𝑋 ) ) ↔ ∃ 𝑡 ∈ ( 𝑂 ‘ { 𝑋 } ) 𝑌 = ( 𝑡 + ( 𝑗 · 𝑋 ) ) ) ) |
19 |
18
|
riotabidv |
⊢ ( 𝑦 = 𝑌 → ( ℩ 𝑗 ∈ 𝑅 ∃ 𝑡 ∈ ( 𝑂 ‘ { 𝑋 } ) 𝑦 = ( 𝑡 + ( 𝑗 · 𝑋 ) ) ) = ( ℩ 𝑗 ∈ 𝑅 ∃ 𝑡 ∈ ( 𝑂 ‘ { 𝑋 } ) 𝑌 = ( 𝑡 + ( 𝑗 · 𝑋 ) ) ) ) |
20 |
|
eqid |
⊢ ( 𝑦 ∈ 𝑉 ↦ ( ℩ 𝑗 ∈ 𝑅 ∃ 𝑡 ∈ ( 𝑂 ‘ { 𝑋 } ) 𝑦 = ( 𝑡 + ( 𝑗 · 𝑋 ) ) ) ) = ( 𝑦 ∈ 𝑉 ↦ ( ℩ 𝑗 ∈ 𝑅 ∃ 𝑡 ∈ ( 𝑂 ‘ { 𝑋 } ) 𝑦 = ( 𝑡 + ( 𝑗 · 𝑋 ) ) ) ) |
21 |
19 20
|
fvmptg |
⊢ ( ( 𝑌 ∈ 𝑉 ∧ ( ℩ 𝑗 ∈ 𝑅 ∃ 𝑡 ∈ ( 𝑂 ‘ { 𝑋 } ) 𝑌 = ( 𝑡 + ( 𝑗 · 𝑋 ) ) ) ∈ V ) → ( ( 𝑦 ∈ 𝑉 ↦ ( ℩ 𝑗 ∈ 𝑅 ∃ 𝑡 ∈ ( 𝑂 ‘ { 𝑋 } ) 𝑦 = ( 𝑡 + ( 𝑗 · 𝑋 ) ) ) ) ‘ 𝑌 ) = ( ℩ 𝑗 ∈ 𝑅 ∃ 𝑡 ∈ ( 𝑂 ‘ { 𝑋 } ) 𝑌 = ( 𝑡 + ( 𝑗 · 𝑋 ) ) ) ) |
22 |
13 16 21
|
sylancl |
⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝑉 ↦ ( ℩ 𝑗 ∈ 𝑅 ∃ 𝑡 ∈ ( 𝑂 ‘ { 𝑋 } ) 𝑦 = ( 𝑡 + ( 𝑗 · 𝑋 ) ) ) ) ‘ 𝑌 ) = ( ℩ 𝑗 ∈ 𝑅 ∃ 𝑡 ∈ ( 𝑂 ‘ { 𝑋 } ) 𝑌 = ( 𝑡 + ( 𝑗 · 𝑋 ) ) ) ) |
23 |
15 22
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝑋 ) ‘ 𝑌 ) = ( ℩ 𝑗 ∈ 𝑅 ∃ 𝑡 ∈ ( 𝑂 ‘ { 𝑋 } ) 𝑌 = ( 𝑡 + ( 𝑗 · 𝑋 ) ) ) ) |