Metamath Proof Explorer


Theorem hvmapvalvalN

Description: Value of value of map (i.e. functional value) from nonzero vectors to nonzero functionals in the closed kernel dual space. (Contributed by NM, 23-Mar-2015) (New usage is discouraged.)

Ref Expression
Hypotheses hvmapval.h 𝐻 = ( LHyp ‘ 𝐾 )
hvmapval.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
hvmapval.o 𝑂 = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
hvmapval.v 𝑉 = ( Base ‘ 𝑈 )
hvmapval.p + = ( +g𝑈 )
hvmapval.t · = ( ·𝑠𝑈 )
hvmapval.z 0 = ( 0g𝑈 )
hvmapval.s 𝑆 = ( Scalar ‘ 𝑈 )
hvmapval.r 𝑅 = ( Base ‘ 𝑆 )
hvmapval.m 𝑀 = ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 )
hvmapval.k ( 𝜑 → ( 𝐾𝐴𝑊𝐻 ) )
hvmapval.x ( 𝜑𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
hvmapval.y ( 𝜑𝑌𝑉 )
Assertion hvmapvalvalN ( 𝜑 → ( ( 𝑀𝑋 ) ‘ 𝑌 ) = ( 𝑗𝑅𝑡 ∈ ( 𝑂 ‘ { 𝑋 } ) 𝑌 = ( 𝑡 + ( 𝑗 · 𝑋 ) ) ) )

Proof

Step Hyp Ref Expression
1 hvmapval.h 𝐻 = ( LHyp ‘ 𝐾 )
2 hvmapval.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
3 hvmapval.o 𝑂 = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
4 hvmapval.v 𝑉 = ( Base ‘ 𝑈 )
5 hvmapval.p + = ( +g𝑈 )
6 hvmapval.t · = ( ·𝑠𝑈 )
7 hvmapval.z 0 = ( 0g𝑈 )
8 hvmapval.s 𝑆 = ( Scalar ‘ 𝑈 )
9 hvmapval.r 𝑅 = ( Base ‘ 𝑆 )
10 hvmapval.m 𝑀 = ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 )
11 hvmapval.k ( 𝜑 → ( 𝐾𝐴𝑊𝐻 ) )
12 hvmapval.x ( 𝜑𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
13 hvmapval.y ( 𝜑𝑌𝑉 )
14 1 2 3 4 5 6 7 8 9 10 11 12 hvmapval ( 𝜑 → ( 𝑀𝑋 ) = ( 𝑦𝑉 ↦ ( 𝑗𝑅𝑡 ∈ ( 𝑂 ‘ { 𝑋 } ) 𝑦 = ( 𝑡 + ( 𝑗 · 𝑋 ) ) ) ) )
15 14 fveq1d ( 𝜑 → ( ( 𝑀𝑋 ) ‘ 𝑌 ) = ( ( 𝑦𝑉 ↦ ( 𝑗𝑅𝑡 ∈ ( 𝑂 ‘ { 𝑋 } ) 𝑦 = ( 𝑡 + ( 𝑗 · 𝑋 ) ) ) ) ‘ 𝑌 ) )
16 riotaex ( 𝑗𝑅𝑡 ∈ ( 𝑂 ‘ { 𝑋 } ) 𝑌 = ( 𝑡 + ( 𝑗 · 𝑋 ) ) ) ∈ V
17 eqeq1 ( 𝑦 = 𝑌 → ( 𝑦 = ( 𝑡 + ( 𝑗 · 𝑋 ) ) ↔ 𝑌 = ( 𝑡 + ( 𝑗 · 𝑋 ) ) ) )
18 17 rexbidv ( 𝑦 = 𝑌 → ( ∃ 𝑡 ∈ ( 𝑂 ‘ { 𝑋 } ) 𝑦 = ( 𝑡 + ( 𝑗 · 𝑋 ) ) ↔ ∃ 𝑡 ∈ ( 𝑂 ‘ { 𝑋 } ) 𝑌 = ( 𝑡 + ( 𝑗 · 𝑋 ) ) ) )
19 18 riotabidv ( 𝑦 = 𝑌 → ( 𝑗𝑅𝑡 ∈ ( 𝑂 ‘ { 𝑋 } ) 𝑦 = ( 𝑡 + ( 𝑗 · 𝑋 ) ) ) = ( 𝑗𝑅𝑡 ∈ ( 𝑂 ‘ { 𝑋 } ) 𝑌 = ( 𝑡 + ( 𝑗 · 𝑋 ) ) ) )
20 eqid ( 𝑦𝑉 ↦ ( 𝑗𝑅𝑡 ∈ ( 𝑂 ‘ { 𝑋 } ) 𝑦 = ( 𝑡 + ( 𝑗 · 𝑋 ) ) ) ) = ( 𝑦𝑉 ↦ ( 𝑗𝑅𝑡 ∈ ( 𝑂 ‘ { 𝑋 } ) 𝑦 = ( 𝑡 + ( 𝑗 · 𝑋 ) ) ) )
21 19 20 fvmptg ( ( 𝑌𝑉 ∧ ( 𝑗𝑅𝑡 ∈ ( 𝑂 ‘ { 𝑋 } ) 𝑌 = ( 𝑡 + ( 𝑗 · 𝑋 ) ) ) ∈ V ) → ( ( 𝑦𝑉 ↦ ( 𝑗𝑅𝑡 ∈ ( 𝑂 ‘ { 𝑋 } ) 𝑦 = ( 𝑡 + ( 𝑗 · 𝑋 ) ) ) ) ‘ 𝑌 ) = ( 𝑗𝑅𝑡 ∈ ( 𝑂 ‘ { 𝑋 } ) 𝑌 = ( 𝑡 + ( 𝑗 · 𝑋 ) ) ) )
22 13 16 21 sylancl ( 𝜑 → ( ( 𝑦𝑉 ↦ ( 𝑗𝑅𝑡 ∈ ( 𝑂 ‘ { 𝑋 } ) 𝑦 = ( 𝑡 + ( 𝑗 · 𝑋 ) ) ) ) ‘ 𝑌 ) = ( 𝑗𝑅𝑡 ∈ ( 𝑂 ‘ { 𝑋 } ) 𝑌 = ( 𝑡 + ( 𝑗 · 𝑋 ) ) ) )
23 15 22 eqtrd ( 𝜑 → ( ( 𝑀𝑋 ) ‘ 𝑌 ) = ( 𝑗𝑅𝑡 ∈ ( 𝑂 ‘ { 𝑋 } ) 𝑌 = ( 𝑡 + ( 𝑗 · 𝑋 ) ) ) )