Step |
Hyp |
Ref |
Expression |
1 |
|
hvmapid.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
hvmapid.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
hvmapid.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
4 |
|
hvmapid.z |
⊢ 0 = ( 0g ‘ 𝑈 ) |
5 |
|
hvmapid.s |
⊢ 𝑆 = ( Scalar ‘ 𝑈 ) |
6 |
|
hvmapid.i |
⊢ 1 = ( 1r ‘ 𝑆 ) |
7 |
|
hvmapid.m |
⊢ 𝑀 = ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
hvmapid.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
9 |
|
hvmapid.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
10 |
|
eqid |
⊢ ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
11 |
|
eqid |
⊢ ( +g ‘ 𝑈 ) = ( +g ‘ 𝑈 ) |
12 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑈 ) = ( ·𝑠 ‘ 𝑈 ) |
13 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
14 |
1 2 10 3 11 12 4 5 13 7 8 9
|
hvmapval |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝑋 ) = ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑗 ∈ ( Base ‘ 𝑆 ) ∃ 𝑡 ∈ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ { 𝑋 } ) 𝑣 = ( 𝑡 ( +g ‘ 𝑈 ) ( 𝑗 ( ·𝑠 ‘ 𝑈 ) 𝑋 ) ) ) ) ) |
15 |
14
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝑋 ) ‘ 𝑋 ) = ( ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑗 ∈ ( Base ‘ 𝑆 ) ∃ 𝑡 ∈ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ { 𝑋 } ) 𝑣 = ( 𝑡 ( +g ‘ 𝑈 ) ( 𝑗 ( ·𝑠 ‘ 𝑈 ) 𝑋 ) ) ) ) ‘ 𝑋 ) ) |
16 |
|
eqid |
⊢ ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑗 ∈ ( Base ‘ 𝑆 ) ∃ 𝑡 ∈ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ { 𝑋 } ) 𝑣 = ( 𝑡 ( +g ‘ 𝑈 ) ( 𝑗 ( ·𝑠 ‘ 𝑈 ) 𝑋 ) ) ) ) = ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑗 ∈ ( Base ‘ 𝑆 ) ∃ 𝑡 ∈ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ { 𝑋 } ) 𝑣 = ( 𝑡 ( +g ‘ 𝑈 ) ( 𝑗 ( ·𝑠 ‘ 𝑈 ) 𝑋 ) ) ) ) |
17 |
1 10 2 3 11 12 4 5 13 6 8 9 16
|
dochfl1 |
⊢ ( 𝜑 → ( ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑗 ∈ ( Base ‘ 𝑆 ) ∃ 𝑡 ∈ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ { 𝑋 } ) 𝑣 = ( 𝑡 ( +g ‘ 𝑈 ) ( 𝑗 ( ·𝑠 ‘ 𝑈 ) 𝑋 ) ) ) ) ‘ 𝑋 ) = 1 ) |
18 |
15 17
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝑋 ) ‘ 𝑋 ) = 1 ) |