Metamath Proof Explorer


Theorem hvmapidN

Description: The value of the vector to functional map, at the vector, is one. (Contributed by NM, 23-Mar-2015) (New usage is discouraged.)

Ref Expression
Hypotheses hvmapid.h H=LHypK
hvmapid.u U=DVecHKW
hvmapid.v V=BaseU
hvmapid.z 0˙=0U
hvmapid.s S=ScalarU
hvmapid.i 1˙=1S
hvmapid.m M=HVMapKW
hvmapid.k φKHLWH
hvmapid.x φXV0˙
Assertion hvmapidN φMXX=1˙

Proof

Step Hyp Ref Expression
1 hvmapid.h H=LHypK
2 hvmapid.u U=DVecHKW
3 hvmapid.v V=BaseU
4 hvmapid.z 0˙=0U
5 hvmapid.s S=ScalarU
6 hvmapid.i 1˙=1S
7 hvmapid.m M=HVMapKW
8 hvmapid.k φKHLWH
9 hvmapid.x φXV0˙
10 eqid ocHKW=ocHKW
11 eqid +U=+U
12 eqid U=U
13 eqid BaseS=BaseS
14 1 2 10 3 11 12 4 5 13 7 8 9 hvmapval φMX=vVιjBaseS|tocHKWXv=t+UjUX
15 14 fveq1d φMXX=vVιjBaseS|tocHKWXv=t+UjUXX
16 eqid vVιjBaseS|tocHKWXv=t+UjUX=vVιjBaseS|tocHKWXv=t+UjUX
17 1 10 2 3 11 12 4 5 13 6 8 9 16 dochfl1 φvVιjBaseS|tocHKWXv=t+UjUXX=1˙
18 15 17 eqtrd φMXX=1˙