Metamath Proof Explorer


Theorem hvmapidN

Description: The value of the vector to functional map, at the vector, is one. (Contributed by NM, 23-Mar-2015) (New usage is discouraged.)

Ref Expression
Hypotheses hvmapid.h H = LHyp K
hvmapid.u U = DVecH K W
hvmapid.v V = Base U
hvmapid.z 0 ˙ = 0 U
hvmapid.s S = Scalar U
hvmapid.i 1 ˙ = 1 S
hvmapid.m M = HVMap K W
hvmapid.k φ K HL W H
hvmapid.x φ X V 0 ˙
Assertion hvmapidN φ M X X = 1 ˙

Proof

Step Hyp Ref Expression
1 hvmapid.h H = LHyp K
2 hvmapid.u U = DVecH K W
3 hvmapid.v V = Base U
4 hvmapid.z 0 ˙ = 0 U
5 hvmapid.s S = Scalar U
6 hvmapid.i 1 ˙ = 1 S
7 hvmapid.m M = HVMap K W
8 hvmapid.k φ K HL W H
9 hvmapid.x φ X V 0 ˙
10 eqid ocH K W = ocH K W
11 eqid + U = + U
12 eqid U = U
13 eqid Base S = Base S
14 1 2 10 3 11 12 4 5 13 7 8 9 hvmapval φ M X = v V ι j Base S | t ocH K W X v = t + U j U X
15 14 fveq1d φ M X X = v V ι j Base S | t ocH K W X v = t + U j U X X
16 eqid v V ι j Base S | t ocH K W X v = t + U j U X = v V ι j Base S | t ocH K W X v = t + U j U X
17 1 10 2 3 11 12 4 5 13 6 8 9 16 dochfl1 φ v V ι j Base S | t ocH K W X v = t + U j U X X = 1 ˙
18 15 17 eqtrd φ M X X = 1 ˙