Metamath Proof Explorer


Theorem hvmapval

Description: Value of map from nonzero vectors to nonzero functionals in the closed kernel dual space. (Contributed by NM, 23-Mar-2015)

Ref Expression
Hypotheses hvmapval.h H = LHyp K
hvmapval.u U = DVecH K W
hvmapval.o O = ocH K W
hvmapval.v V = Base U
hvmapval.p + ˙ = + U
hvmapval.t · ˙ = U
hvmapval.z 0 ˙ = 0 U
hvmapval.s S = Scalar U
hvmapval.r R = Base S
hvmapval.m M = HVMap K W
hvmapval.k φ K A W H
hvmapval.x φ X V 0 ˙
Assertion hvmapval φ M X = v V ι j R | t O X v = t + ˙ j · ˙ X

Proof

Step Hyp Ref Expression
1 hvmapval.h H = LHyp K
2 hvmapval.u U = DVecH K W
3 hvmapval.o O = ocH K W
4 hvmapval.v V = Base U
5 hvmapval.p + ˙ = + U
6 hvmapval.t · ˙ = U
7 hvmapval.z 0 ˙ = 0 U
8 hvmapval.s S = Scalar U
9 hvmapval.r R = Base S
10 hvmapval.m M = HVMap K W
11 hvmapval.k φ K A W H
12 hvmapval.x φ X V 0 ˙
13 1 2 3 4 5 6 7 8 9 10 11 hvmapfval φ M = x V 0 ˙ v V ι j R | t O x v = t + ˙ j · ˙ x
14 13 fveq1d φ M X = x V 0 ˙ v V ι j R | t O x v = t + ˙ j · ˙ x X
15 4 fvexi V V
16 15 mptex v V ι j R | t O X v = t + ˙ j · ˙ X V
17 sneq x = X x = X
18 17 fveq2d x = X O x = O X
19 oveq2 x = X j · ˙ x = j · ˙ X
20 19 oveq2d x = X t + ˙ j · ˙ x = t + ˙ j · ˙ X
21 20 eqeq2d x = X v = t + ˙ j · ˙ x v = t + ˙ j · ˙ X
22 18 21 rexeqbidv x = X t O x v = t + ˙ j · ˙ x t O X v = t + ˙ j · ˙ X
23 22 riotabidv x = X ι j R | t O x v = t + ˙ j · ˙ x = ι j R | t O X v = t + ˙ j · ˙ X
24 23 mpteq2dv x = X v V ι j R | t O x v = t + ˙ j · ˙ x = v V ι j R | t O X v = t + ˙ j · ˙ X
25 eqid x V 0 ˙ v V ι j R | t O x v = t + ˙ j · ˙ x = x V 0 ˙ v V ι j R | t O x v = t + ˙ j · ˙ x
26 24 25 fvmptg X V 0 ˙ v V ι j R | t O X v = t + ˙ j · ˙ X V x V 0 ˙ v V ι j R | t O x v = t + ˙ j · ˙ x X = v V ι j R | t O X v = t + ˙ j · ˙ X
27 12 16 26 sylancl φ x V 0 ˙ v V ι j R | t O x v = t + ˙ j · ˙ x X = v V ι j R | t O X v = t + ˙ j · ˙ X
28 14 27 eqtrd φ M X = v V ι j R | t O X v = t + ˙ j · ˙ X