Metamath Proof Explorer


Theorem hvmapfval

Description: Map from nonzero vectors to nonzero functionals in the closed kernel dual space. (Contributed by NM, 23-Mar-2015)

Ref Expression
Hypotheses hvmapval.h H=LHypK
hvmapval.u U=DVecHKW
hvmapval.o O=ocHKW
hvmapval.v V=BaseU
hvmapval.p +˙=+U
hvmapval.t ·˙=U
hvmapval.z 0˙=0U
hvmapval.s S=ScalarU
hvmapval.r R=BaseS
hvmapval.m M=HVMapKW
hvmapval.k φKAWH
Assertion hvmapfval φM=xV0˙vVιjR|tOxv=t+˙j·˙x

Proof

Step Hyp Ref Expression
1 hvmapval.h H=LHypK
2 hvmapval.u U=DVecHKW
3 hvmapval.o O=ocHKW
4 hvmapval.v V=BaseU
5 hvmapval.p +˙=+U
6 hvmapval.t ·˙=U
7 hvmapval.z 0˙=0U
8 hvmapval.s S=ScalarU
9 hvmapval.r R=BaseS
10 hvmapval.m M=HVMapKW
11 hvmapval.k φKAWH
12 1 hvmapffval KAHVMapK=wHxBaseDVecHKw0DVecHKwvBaseDVecHKwιjBaseScalarDVecHKw|tocHKwxv=t+DVecHKwjDVecHKwx
13 12 fveq1d KAHVMapKW=wHxBaseDVecHKw0DVecHKwvBaseDVecHKwιjBaseScalarDVecHKw|tocHKwxv=t+DVecHKwjDVecHKwxW
14 10 13 eqtrid KAM=wHxBaseDVecHKw0DVecHKwvBaseDVecHKwιjBaseScalarDVecHKw|tocHKwxv=t+DVecHKwjDVecHKwxW
15 fveq2 w=WDVecHKw=DVecHKW
16 15 2 eqtr4di w=WDVecHKw=U
17 16 fveq2d w=WBaseDVecHKw=BaseU
18 17 4 eqtr4di w=WBaseDVecHKw=V
19 16 fveq2d w=W0DVecHKw=0U
20 19 7 eqtr4di w=W0DVecHKw=0˙
21 20 sneqd w=W0DVecHKw=0˙
22 18 21 difeq12d w=WBaseDVecHKw0DVecHKw=V0˙
23 16 fveq2d w=WScalarDVecHKw=ScalarU
24 23 8 eqtr4di w=WScalarDVecHKw=S
25 24 fveq2d w=WBaseScalarDVecHKw=BaseS
26 25 9 eqtr4di w=WBaseScalarDVecHKw=R
27 fveq2 w=WocHKw=ocHKW
28 27 3 eqtr4di w=WocHKw=O
29 28 fveq1d w=WocHKwx=Ox
30 16 fveq2d w=W+DVecHKw=+U
31 30 5 eqtr4di w=W+DVecHKw=+˙
32 eqidd w=Wt=t
33 16 fveq2d w=WDVecHKw=U
34 33 6 eqtr4di w=WDVecHKw=·˙
35 34 oveqd w=WjDVecHKwx=j·˙x
36 31 32 35 oveq123d w=Wt+DVecHKwjDVecHKwx=t+˙j·˙x
37 36 eqeq2d w=Wv=t+DVecHKwjDVecHKwxv=t+˙j·˙x
38 29 37 rexeqbidv w=WtocHKwxv=t+DVecHKwjDVecHKwxtOxv=t+˙j·˙x
39 26 38 riotaeqbidv w=WιjBaseScalarDVecHKw|tocHKwxv=t+DVecHKwjDVecHKwx=ιjR|tOxv=t+˙j·˙x
40 18 39 mpteq12dv w=WvBaseDVecHKwιjBaseScalarDVecHKw|tocHKwxv=t+DVecHKwjDVecHKwx=vVιjR|tOxv=t+˙j·˙x
41 22 40 mpteq12dv w=WxBaseDVecHKw0DVecHKwvBaseDVecHKwιjBaseScalarDVecHKw|tocHKwxv=t+DVecHKwjDVecHKwx=xV0˙vVιjR|tOxv=t+˙j·˙x
42 eqid wHxBaseDVecHKw0DVecHKwvBaseDVecHKwιjBaseScalarDVecHKw|tocHKwxv=t+DVecHKwjDVecHKwx=wHxBaseDVecHKw0DVecHKwvBaseDVecHKwιjBaseScalarDVecHKw|tocHKwxv=t+DVecHKwjDVecHKwx
43 4 fvexi VV
44 43 difexi V0˙V
45 44 mptex xV0˙vVιjR|tOxv=t+˙j·˙xV
46 41 42 45 fvmpt WHwHxBaseDVecHKw0DVecHKwvBaseDVecHKwιjBaseScalarDVecHKw|tocHKwxv=t+DVecHKwjDVecHKwxW=xV0˙vVιjR|tOxv=t+˙j·˙x
47 14 46 sylan9eq KAWHM=xV0˙vVιjR|tOxv=t+˙j·˙x
48 11 47 syl φM=xV0˙vVιjR|tOxv=t+˙j·˙x