Metamath Proof Explorer


Theorem hvmapvalvalN

Description: Value of value of map (i.e. functional value) from nonzero vectors to nonzero functionals in the closed kernel dual space. (Contributed by NM, 23-Mar-2015) (New usage is discouraged.)

Ref Expression
Hypotheses hvmapval.h H = LHyp K
hvmapval.u U = DVecH K W
hvmapval.o O = ocH K W
hvmapval.v V = Base U
hvmapval.p + ˙ = + U
hvmapval.t · ˙ = U
hvmapval.z 0 ˙ = 0 U
hvmapval.s S = Scalar U
hvmapval.r R = Base S
hvmapval.m M = HVMap K W
hvmapval.k φ K A W H
hvmapval.x φ X V 0 ˙
hvmapval.y φ Y V
Assertion hvmapvalvalN φ M X Y = ι j R | t O X Y = t + ˙ j · ˙ X

Proof

Step Hyp Ref Expression
1 hvmapval.h H = LHyp K
2 hvmapval.u U = DVecH K W
3 hvmapval.o O = ocH K W
4 hvmapval.v V = Base U
5 hvmapval.p + ˙ = + U
6 hvmapval.t · ˙ = U
7 hvmapval.z 0 ˙ = 0 U
8 hvmapval.s S = Scalar U
9 hvmapval.r R = Base S
10 hvmapval.m M = HVMap K W
11 hvmapval.k φ K A W H
12 hvmapval.x φ X V 0 ˙
13 hvmapval.y φ Y V
14 1 2 3 4 5 6 7 8 9 10 11 12 hvmapval φ M X = y V ι j R | t O X y = t + ˙ j · ˙ X
15 14 fveq1d φ M X Y = y V ι j R | t O X y = t + ˙ j · ˙ X Y
16 riotaex ι j R | t O X Y = t + ˙ j · ˙ X V
17 eqeq1 y = Y y = t + ˙ j · ˙ X Y = t + ˙ j · ˙ X
18 17 rexbidv y = Y t O X y = t + ˙ j · ˙ X t O X Y = t + ˙ j · ˙ X
19 18 riotabidv y = Y ι j R | t O X y = t + ˙ j · ˙ X = ι j R | t O X Y = t + ˙ j · ˙ X
20 eqid y V ι j R | t O X y = t + ˙ j · ˙ X = y V ι j R | t O X y = t + ˙ j · ˙ X
21 19 20 fvmptg Y V ι j R | t O X Y = t + ˙ j · ˙ X V y V ι j R | t O X y = t + ˙ j · ˙ X Y = ι j R | t O X Y = t + ˙ j · ˙ X
22 13 16 21 sylancl φ y V ι j R | t O X y = t + ˙ j · ˙ X Y = ι j R | t O X Y = t + ˙ j · ˙ X
23 15 22 eqtrd φ M X Y = ι j R | t O X Y = t + ˙ j · ˙ X