Step |
Hyp |
Ref |
Expression |
1 |
|
hvmapval.h |
|- H = ( LHyp ` K ) |
2 |
|
hvmapval.u |
|- U = ( ( DVecH ` K ) ` W ) |
3 |
|
hvmapval.o |
|- O = ( ( ocH ` K ) ` W ) |
4 |
|
hvmapval.v |
|- V = ( Base ` U ) |
5 |
|
hvmapval.p |
|- .+ = ( +g ` U ) |
6 |
|
hvmapval.t |
|- .x. = ( .s ` U ) |
7 |
|
hvmapval.z |
|- .0. = ( 0g ` U ) |
8 |
|
hvmapval.s |
|- S = ( Scalar ` U ) |
9 |
|
hvmapval.r |
|- R = ( Base ` S ) |
10 |
|
hvmapval.m |
|- M = ( ( HVMap ` K ) ` W ) |
11 |
|
hvmapval.k |
|- ( ph -> ( K e. A /\ W e. H ) ) |
12 |
|
hvmapval.x |
|- ( ph -> X e. ( V \ { .0. } ) ) |
13 |
1 2 3 4 5 6 7 8 9 10 11
|
hvmapfval |
|- ( ph -> M = ( x e. ( V \ { .0. } ) |-> ( v e. V |-> ( iota_ j e. R E. t e. ( O ` { x } ) v = ( t .+ ( j .x. x ) ) ) ) ) ) |
14 |
13
|
fveq1d |
|- ( ph -> ( M ` X ) = ( ( x e. ( V \ { .0. } ) |-> ( v e. V |-> ( iota_ j e. R E. t e. ( O ` { x } ) v = ( t .+ ( j .x. x ) ) ) ) ) ` X ) ) |
15 |
4
|
fvexi |
|- V e. _V |
16 |
15
|
mptex |
|- ( v e. V |-> ( iota_ j e. R E. t e. ( O ` { X } ) v = ( t .+ ( j .x. X ) ) ) ) e. _V |
17 |
|
sneq |
|- ( x = X -> { x } = { X } ) |
18 |
17
|
fveq2d |
|- ( x = X -> ( O ` { x } ) = ( O ` { X } ) ) |
19 |
|
oveq2 |
|- ( x = X -> ( j .x. x ) = ( j .x. X ) ) |
20 |
19
|
oveq2d |
|- ( x = X -> ( t .+ ( j .x. x ) ) = ( t .+ ( j .x. X ) ) ) |
21 |
20
|
eqeq2d |
|- ( x = X -> ( v = ( t .+ ( j .x. x ) ) <-> v = ( t .+ ( j .x. X ) ) ) ) |
22 |
18 21
|
rexeqbidv |
|- ( x = X -> ( E. t e. ( O ` { x } ) v = ( t .+ ( j .x. x ) ) <-> E. t e. ( O ` { X } ) v = ( t .+ ( j .x. X ) ) ) ) |
23 |
22
|
riotabidv |
|- ( x = X -> ( iota_ j e. R E. t e. ( O ` { x } ) v = ( t .+ ( j .x. x ) ) ) = ( iota_ j e. R E. t e. ( O ` { X } ) v = ( t .+ ( j .x. X ) ) ) ) |
24 |
23
|
mpteq2dv |
|- ( x = X -> ( v e. V |-> ( iota_ j e. R E. t e. ( O ` { x } ) v = ( t .+ ( j .x. x ) ) ) ) = ( v e. V |-> ( iota_ j e. R E. t e. ( O ` { X } ) v = ( t .+ ( j .x. X ) ) ) ) ) |
25 |
|
eqid |
|- ( x e. ( V \ { .0. } ) |-> ( v e. V |-> ( iota_ j e. R E. t e. ( O ` { x } ) v = ( t .+ ( j .x. x ) ) ) ) ) = ( x e. ( V \ { .0. } ) |-> ( v e. V |-> ( iota_ j e. R E. t e. ( O ` { x } ) v = ( t .+ ( j .x. x ) ) ) ) ) |
26 |
24 25
|
fvmptg |
|- ( ( X e. ( V \ { .0. } ) /\ ( v e. V |-> ( iota_ j e. R E. t e. ( O ` { X } ) v = ( t .+ ( j .x. X ) ) ) ) e. _V ) -> ( ( x e. ( V \ { .0. } ) |-> ( v e. V |-> ( iota_ j e. R E. t e. ( O ` { x } ) v = ( t .+ ( j .x. x ) ) ) ) ) ` X ) = ( v e. V |-> ( iota_ j e. R E. t e. ( O ` { X } ) v = ( t .+ ( j .x. X ) ) ) ) ) |
27 |
12 16 26
|
sylancl |
|- ( ph -> ( ( x e. ( V \ { .0. } ) |-> ( v e. V |-> ( iota_ j e. R E. t e. ( O ` { x } ) v = ( t .+ ( j .x. x ) ) ) ) ) ` X ) = ( v e. V |-> ( iota_ j e. R E. t e. ( O ` { X } ) v = ( t .+ ( j .x. X ) ) ) ) ) |
28 |
14 27
|
eqtrd |
|- ( ph -> ( M ` X ) = ( v e. V |-> ( iota_ j e. R E. t e. ( O ` { X } ) v = ( t .+ ( j .x. X ) ) ) ) ) |