Metamath Proof Explorer


Theorem hvmapidN

Description: The value of the vector to functional map, at the vector, is one. (Contributed by NM, 23-Mar-2015) (New usage is discouraged.)

Ref Expression
Hypotheses hvmapid.h
|- H = ( LHyp ` K )
hvmapid.u
|- U = ( ( DVecH ` K ) ` W )
hvmapid.v
|- V = ( Base ` U )
hvmapid.z
|- .0. = ( 0g ` U )
hvmapid.s
|- S = ( Scalar ` U )
hvmapid.i
|- .1. = ( 1r ` S )
hvmapid.m
|- M = ( ( HVMap ` K ) ` W )
hvmapid.k
|- ( ph -> ( K e. HL /\ W e. H ) )
hvmapid.x
|- ( ph -> X e. ( V \ { .0. } ) )
Assertion hvmapidN
|- ( ph -> ( ( M ` X ) ` X ) = .1. )

Proof

Step Hyp Ref Expression
1 hvmapid.h
 |-  H = ( LHyp ` K )
2 hvmapid.u
 |-  U = ( ( DVecH ` K ) ` W )
3 hvmapid.v
 |-  V = ( Base ` U )
4 hvmapid.z
 |-  .0. = ( 0g ` U )
5 hvmapid.s
 |-  S = ( Scalar ` U )
6 hvmapid.i
 |-  .1. = ( 1r ` S )
7 hvmapid.m
 |-  M = ( ( HVMap ` K ) ` W )
8 hvmapid.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
9 hvmapid.x
 |-  ( ph -> X e. ( V \ { .0. } ) )
10 eqid
 |-  ( ( ocH ` K ) ` W ) = ( ( ocH ` K ) ` W )
11 eqid
 |-  ( +g ` U ) = ( +g ` U )
12 eqid
 |-  ( .s ` U ) = ( .s ` U )
13 eqid
 |-  ( Base ` S ) = ( Base ` S )
14 1 2 10 3 11 12 4 5 13 7 8 9 hvmapval
 |-  ( ph -> ( M ` X ) = ( v e. V |-> ( iota_ j e. ( Base ` S ) E. t e. ( ( ( ocH ` K ) ` W ) ` { X } ) v = ( t ( +g ` U ) ( j ( .s ` U ) X ) ) ) ) )
15 14 fveq1d
 |-  ( ph -> ( ( M ` X ) ` X ) = ( ( v e. V |-> ( iota_ j e. ( Base ` S ) E. t e. ( ( ( ocH ` K ) ` W ) ` { X } ) v = ( t ( +g ` U ) ( j ( .s ` U ) X ) ) ) ) ` X ) )
16 eqid
 |-  ( v e. V |-> ( iota_ j e. ( Base ` S ) E. t e. ( ( ( ocH ` K ) ` W ) ` { X } ) v = ( t ( +g ` U ) ( j ( .s ` U ) X ) ) ) ) = ( v e. V |-> ( iota_ j e. ( Base ` S ) E. t e. ( ( ( ocH ` K ) ` W ) ` { X } ) v = ( t ( +g ` U ) ( j ( .s ` U ) X ) ) ) )
17 1 10 2 3 11 12 4 5 13 6 8 9 16 dochfl1
 |-  ( ph -> ( ( v e. V |-> ( iota_ j e. ( Base ` S ) E. t e. ( ( ( ocH ` K ) ` W ) ` { X } ) v = ( t ( +g ` U ) ( j ( .s ` U ) X ) ) ) ) ` X ) = .1. )
18 15 17 eqtrd
 |-  ( ph -> ( ( M ` X ) ` X ) = .1. )