| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hvmapid.h |
|- H = ( LHyp ` K ) |
| 2 |
|
hvmapid.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 3 |
|
hvmapid.v |
|- V = ( Base ` U ) |
| 4 |
|
hvmapid.z |
|- .0. = ( 0g ` U ) |
| 5 |
|
hvmapid.s |
|- S = ( Scalar ` U ) |
| 6 |
|
hvmapid.i |
|- .1. = ( 1r ` S ) |
| 7 |
|
hvmapid.m |
|- M = ( ( HVMap ` K ) ` W ) |
| 8 |
|
hvmapid.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 9 |
|
hvmapid.x |
|- ( ph -> X e. ( V \ { .0. } ) ) |
| 10 |
|
eqid |
|- ( ( ocH ` K ) ` W ) = ( ( ocH ` K ) ` W ) |
| 11 |
|
eqid |
|- ( +g ` U ) = ( +g ` U ) |
| 12 |
|
eqid |
|- ( .s ` U ) = ( .s ` U ) |
| 13 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
| 14 |
1 2 10 3 11 12 4 5 13 7 8 9
|
hvmapval |
|- ( ph -> ( M ` X ) = ( v e. V |-> ( iota_ j e. ( Base ` S ) E. t e. ( ( ( ocH ` K ) ` W ) ` { X } ) v = ( t ( +g ` U ) ( j ( .s ` U ) X ) ) ) ) ) |
| 15 |
14
|
fveq1d |
|- ( ph -> ( ( M ` X ) ` X ) = ( ( v e. V |-> ( iota_ j e. ( Base ` S ) E. t e. ( ( ( ocH ` K ) ` W ) ` { X } ) v = ( t ( +g ` U ) ( j ( .s ` U ) X ) ) ) ) ` X ) ) |
| 16 |
|
eqid |
|- ( v e. V |-> ( iota_ j e. ( Base ` S ) E. t e. ( ( ( ocH ` K ) ` W ) ` { X } ) v = ( t ( +g ` U ) ( j ( .s ` U ) X ) ) ) ) = ( v e. V |-> ( iota_ j e. ( Base ` S ) E. t e. ( ( ( ocH ` K ) ` W ) ` { X } ) v = ( t ( +g ` U ) ( j ( .s ` U ) X ) ) ) ) |
| 17 |
1 10 2 3 11 12 4 5 13 6 8 9 16
|
dochfl1 |
|- ( ph -> ( ( v e. V |-> ( iota_ j e. ( Base ` S ) E. t e. ( ( ( ocH ` K ) ` W ) ` { X } ) v = ( t ( +g ` U ) ( j ( .s ` U ) X ) ) ) ) ` X ) = .1. ) |
| 18 |
15 17
|
eqtrd |
|- ( ph -> ( ( M ` X ) ` X ) = .1. ) |