Step |
Hyp |
Ref |
Expression |
1 |
|
hvmap1o.h |
|- H = ( LHyp ` K ) |
2 |
|
hvmap1o.o |
|- O = ( ( ocH ` K ) ` W ) |
3 |
|
hvmap1o.u |
|- U = ( ( DVecH ` K ) ` W ) |
4 |
|
hvmap1o.v |
|- V = ( Base ` U ) |
5 |
|
hvmap1o.z |
|- .0. = ( 0g ` U ) |
6 |
|
hvmap1o.f |
|- F = ( LFnl ` U ) |
7 |
|
hvmap1o.l |
|- L = ( LKer ` U ) |
8 |
|
hvmap1o.d |
|- D = ( LDual ` U ) |
9 |
|
hvmap1o.q |
|- Q = ( 0g ` D ) |
10 |
|
hvmap1o.c |
|- C = { f e. F | ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) } |
11 |
|
hvmap1o.m |
|- M = ( ( HVMap ` K ) ` W ) |
12 |
|
hvmap1o.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
13 |
|
eqid |
|- ( +g ` U ) = ( +g ` U ) |
14 |
|
eqid |
|- ( .s ` U ) = ( .s ` U ) |
15 |
|
eqid |
|- ( Scalar ` U ) = ( Scalar ` U ) |
16 |
|
eqid |
|- ( Base ` ( Scalar ` U ) ) = ( Base ` ( Scalar ` U ) ) |
17 |
|
eqid |
|- ( x e. ( V \ { .0. } ) |-> ( v e. V |-> ( iota_ k e. ( Base ` ( Scalar ` U ) ) E. w e. ( O ` { x } ) v = ( w ( +g ` U ) ( k ( .s ` U ) x ) ) ) ) ) = ( x e. ( V \ { .0. } ) |-> ( v e. V |-> ( iota_ k e. ( Base ` ( Scalar ` U ) ) E. w e. ( O ` { x } ) v = ( w ( +g ` U ) ( k ( .s ` U ) x ) ) ) ) ) |
18 |
1 2 3 4 13 14 15 16 5 6 7 8 9 10 17 12
|
lcf1o |
|- ( ph -> ( x e. ( V \ { .0. } ) |-> ( v e. V |-> ( iota_ k e. ( Base ` ( Scalar ` U ) ) E. w e. ( O ` { x } ) v = ( w ( +g ` U ) ( k ( .s ` U ) x ) ) ) ) ) : ( V \ { .0. } ) -1-1-onto-> ( C \ { Q } ) ) |
19 |
1 3 2 4 13 14 5 15 16 11 12
|
hvmapfval |
|- ( ph -> M = ( x e. ( V \ { .0. } ) |-> ( v e. V |-> ( iota_ k e. ( Base ` ( Scalar ` U ) ) E. w e. ( O ` { x } ) v = ( w ( +g ` U ) ( k ( .s ` U ) x ) ) ) ) ) ) |
20 |
19
|
f1oeq1d |
|- ( ph -> ( M : ( V \ { .0. } ) -1-1-onto-> ( C \ { Q } ) <-> ( x e. ( V \ { .0. } ) |-> ( v e. V |-> ( iota_ k e. ( Base ` ( Scalar ` U ) ) E. w e. ( O ` { x } ) v = ( w ( +g ` U ) ( k ( .s ` U ) x ) ) ) ) ) : ( V \ { .0. } ) -1-1-onto-> ( C \ { Q } ) ) ) |
21 |
18 20
|
mpbird |
|- ( ph -> M : ( V \ { .0. } ) -1-1-onto-> ( C \ { Q } ) ) |