Metamath Proof Explorer


Theorem hvmap1o

Description: The vector to functional map provides a bijection from nonzero vectors V to nonzero functionals with closed kernels C . (Contributed by NM, 27-Mar-2015)

Ref Expression
Hypotheses hvmap1o.h
|- H = ( LHyp ` K )
hvmap1o.o
|- O = ( ( ocH ` K ) ` W )
hvmap1o.u
|- U = ( ( DVecH ` K ) ` W )
hvmap1o.v
|- V = ( Base ` U )
hvmap1o.z
|- .0. = ( 0g ` U )
hvmap1o.f
|- F = ( LFnl ` U )
hvmap1o.l
|- L = ( LKer ` U )
hvmap1o.d
|- D = ( LDual ` U )
hvmap1o.q
|- Q = ( 0g ` D )
hvmap1o.c
|- C = { f e. F | ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) }
hvmap1o.m
|- M = ( ( HVMap ` K ) ` W )
hvmap1o.k
|- ( ph -> ( K e. HL /\ W e. H ) )
Assertion hvmap1o
|- ( ph -> M : ( V \ { .0. } ) -1-1-onto-> ( C \ { Q } ) )

Proof

Step Hyp Ref Expression
1 hvmap1o.h
 |-  H = ( LHyp ` K )
2 hvmap1o.o
 |-  O = ( ( ocH ` K ) ` W )
3 hvmap1o.u
 |-  U = ( ( DVecH ` K ) ` W )
4 hvmap1o.v
 |-  V = ( Base ` U )
5 hvmap1o.z
 |-  .0. = ( 0g ` U )
6 hvmap1o.f
 |-  F = ( LFnl ` U )
7 hvmap1o.l
 |-  L = ( LKer ` U )
8 hvmap1o.d
 |-  D = ( LDual ` U )
9 hvmap1o.q
 |-  Q = ( 0g ` D )
10 hvmap1o.c
 |-  C = { f e. F | ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) }
11 hvmap1o.m
 |-  M = ( ( HVMap ` K ) ` W )
12 hvmap1o.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
13 eqid
 |-  ( +g ` U ) = ( +g ` U )
14 eqid
 |-  ( .s ` U ) = ( .s ` U )
15 eqid
 |-  ( Scalar ` U ) = ( Scalar ` U )
16 eqid
 |-  ( Base ` ( Scalar ` U ) ) = ( Base ` ( Scalar ` U ) )
17 eqid
 |-  ( x e. ( V \ { .0. } ) |-> ( v e. V |-> ( iota_ k e. ( Base ` ( Scalar ` U ) ) E. w e. ( O ` { x } ) v = ( w ( +g ` U ) ( k ( .s ` U ) x ) ) ) ) ) = ( x e. ( V \ { .0. } ) |-> ( v e. V |-> ( iota_ k e. ( Base ` ( Scalar ` U ) ) E. w e. ( O ` { x } ) v = ( w ( +g ` U ) ( k ( .s ` U ) x ) ) ) ) )
18 1 2 3 4 13 14 15 16 5 6 7 8 9 10 17 12 lcf1o
 |-  ( ph -> ( x e. ( V \ { .0. } ) |-> ( v e. V |-> ( iota_ k e. ( Base ` ( Scalar ` U ) ) E. w e. ( O ` { x } ) v = ( w ( +g ` U ) ( k ( .s ` U ) x ) ) ) ) ) : ( V \ { .0. } ) -1-1-onto-> ( C \ { Q } ) )
19 1 3 2 4 13 14 5 15 16 11 12 hvmapfval
 |-  ( ph -> M = ( x e. ( V \ { .0. } ) |-> ( v e. V |-> ( iota_ k e. ( Base ` ( Scalar ` U ) ) E. w e. ( O ` { x } ) v = ( w ( +g ` U ) ( k ( .s ` U ) x ) ) ) ) ) )
20 19 f1oeq1d
 |-  ( ph -> ( M : ( V \ { .0. } ) -1-1-onto-> ( C \ { Q } ) <-> ( x e. ( V \ { .0. } ) |-> ( v e. V |-> ( iota_ k e. ( Base ` ( Scalar ` U ) ) E. w e. ( O ` { x } ) v = ( w ( +g ` U ) ( k ( .s ` U ) x ) ) ) ) ) : ( V \ { .0. } ) -1-1-onto-> ( C \ { Q } ) ) )
21 18 20 mpbird
 |-  ( ph -> M : ( V \ { .0. } ) -1-1-onto-> ( C \ { Q } ) )