Metamath Proof Explorer


Theorem hvmap1o

Description: The vector to functional map provides a bijection from nonzero vectors V to nonzero functionals with closed kernels C . (Contributed by NM, 27-Mar-2015)

Ref Expression
Hypotheses hvmap1o.h 𝐻 = ( LHyp ‘ 𝐾 )
hvmap1o.o 𝑂 = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
hvmap1o.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
hvmap1o.v 𝑉 = ( Base ‘ 𝑈 )
hvmap1o.z 0 = ( 0g𝑈 )
hvmap1o.f 𝐹 = ( LFnl ‘ 𝑈 )
hvmap1o.l 𝐿 = ( LKer ‘ 𝑈 )
hvmap1o.d 𝐷 = ( LDual ‘ 𝑈 )
hvmap1o.q 𝑄 = ( 0g𝐷 )
hvmap1o.c 𝐶 = { 𝑓𝐹 ∣ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) }
hvmap1o.m 𝑀 = ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 )
hvmap1o.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
Assertion hvmap1o ( 𝜑𝑀 : ( 𝑉 ∖ { 0 } ) –1-1-onto→ ( 𝐶 ∖ { 𝑄 } ) )

Proof

Step Hyp Ref Expression
1 hvmap1o.h 𝐻 = ( LHyp ‘ 𝐾 )
2 hvmap1o.o 𝑂 = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
3 hvmap1o.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
4 hvmap1o.v 𝑉 = ( Base ‘ 𝑈 )
5 hvmap1o.z 0 = ( 0g𝑈 )
6 hvmap1o.f 𝐹 = ( LFnl ‘ 𝑈 )
7 hvmap1o.l 𝐿 = ( LKer ‘ 𝑈 )
8 hvmap1o.d 𝐷 = ( LDual ‘ 𝑈 )
9 hvmap1o.q 𝑄 = ( 0g𝐷 )
10 hvmap1o.c 𝐶 = { 𝑓𝐹 ∣ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) }
11 hvmap1o.m 𝑀 = ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 )
12 hvmap1o.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
13 eqid ( +g𝑈 ) = ( +g𝑈 )
14 eqid ( ·𝑠𝑈 ) = ( ·𝑠𝑈 )
15 eqid ( Scalar ‘ 𝑈 ) = ( Scalar ‘ 𝑈 )
16 eqid ( Base ‘ ( Scalar ‘ 𝑈 ) ) = ( Base ‘ ( Scalar ‘ 𝑈 ) )
17 eqid ( 𝑥 ∈ ( 𝑉 ∖ { 0 } ) ↦ ( 𝑣𝑉 ↦ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) ∃ 𝑤 ∈ ( 𝑂 ‘ { 𝑥 } ) 𝑣 = ( 𝑤 ( +g𝑈 ) ( 𝑘 ( ·𝑠𝑈 ) 𝑥 ) ) ) ) ) = ( 𝑥 ∈ ( 𝑉 ∖ { 0 } ) ↦ ( 𝑣𝑉 ↦ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) ∃ 𝑤 ∈ ( 𝑂 ‘ { 𝑥 } ) 𝑣 = ( 𝑤 ( +g𝑈 ) ( 𝑘 ( ·𝑠𝑈 ) 𝑥 ) ) ) ) )
18 1 2 3 4 13 14 15 16 5 6 7 8 9 10 17 12 lcf1o ( 𝜑 → ( 𝑥 ∈ ( 𝑉 ∖ { 0 } ) ↦ ( 𝑣𝑉 ↦ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) ∃ 𝑤 ∈ ( 𝑂 ‘ { 𝑥 } ) 𝑣 = ( 𝑤 ( +g𝑈 ) ( 𝑘 ( ·𝑠𝑈 ) 𝑥 ) ) ) ) ) : ( 𝑉 ∖ { 0 } ) –1-1-onto→ ( 𝐶 ∖ { 𝑄 } ) )
19 1 3 2 4 13 14 5 15 16 11 12 hvmapfval ( 𝜑𝑀 = ( 𝑥 ∈ ( 𝑉 ∖ { 0 } ) ↦ ( 𝑣𝑉 ↦ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) ∃ 𝑤 ∈ ( 𝑂 ‘ { 𝑥 } ) 𝑣 = ( 𝑤 ( +g𝑈 ) ( 𝑘 ( ·𝑠𝑈 ) 𝑥 ) ) ) ) ) )
20 19 f1oeq1d ( 𝜑 → ( 𝑀 : ( 𝑉 ∖ { 0 } ) –1-1-onto→ ( 𝐶 ∖ { 𝑄 } ) ↔ ( 𝑥 ∈ ( 𝑉 ∖ { 0 } ) ↦ ( 𝑣𝑉 ↦ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) ∃ 𝑤 ∈ ( 𝑂 ‘ { 𝑥 } ) 𝑣 = ( 𝑤 ( +g𝑈 ) ( 𝑘 ( ·𝑠𝑈 ) 𝑥 ) ) ) ) ) : ( 𝑉 ∖ { 0 } ) –1-1-onto→ ( 𝐶 ∖ { 𝑄 } ) ) )
21 18 20 mpbird ( 𝜑𝑀 : ( 𝑉 ∖ { 0 } ) –1-1-onto→ ( 𝐶 ∖ { 𝑄 } ) )