Step |
Hyp |
Ref |
Expression |
1 |
|
hvmap1o.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
hvmap1o.o |
⊢ 𝑂 = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
hvmap1o.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
hvmap1o.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
5 |
|
hvmap1o.z |
⊢ 0 = ( 0g ‘ 𝑈 ) |
6 |
|
hvmap1o.f |
⊢ 𝐹 = ( LFnl ‘ 𝑈 ) |
7 |
|
hvmap1o.l |
⊢ 𝐿 = ( LKer ‘ 𝑈 ) |
8 |
|
hvmap1o.d |
⊢ 𝐷 = ( LDual ‘ 𝑈 ) |
9 |
|
hvmap1o.q |
⊢ 𝑄 = ( 0g ‘ 𝐷 ) |
10 |
|
hvmap1o.c |
⊢ 𝐶 = { 𝑓 ∈ 𝐹 ∣ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) } |
11 |
|
hvmap1o.m |
⊢ 𝑀 = ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) |
12 |
|
hvmap1o.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
13 |
|
eqid |
⊢ ( +g ‘ 𝑈 ) = ( +g ‘ 𝑈 ) |
14 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑈 ) = ( ·𝑠 ‘ 𝑈 ) |
15 |
|
eqid |
⊢ ( Scalar ‘ 𝑈 ) = ( Scalar ‘ 𝑈 ) |
16 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑈 ) ) = ( Base ‘ ( Scalar ‘ 𝑈 ) ) |
17 |
|
eqid |
⊢ ( 𝑥 ∈ ( 𝑉 ∖ { 0 } ) ↦ ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) ∃ 𝑤 ∈ ( 𝑂 ‘ { 𝑥 } ) 𝑣 = ( 𝑤 ( +g ‘ 𝑈 ) ( 𝑘 ( ·𝑠 ‘ 𝑈 ) 𝑥 ) ) ) ) ) = ( 𝑥 ∈ ( 𝑉 ∖ { 0 } ) ↦ ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) ∃ 𝑤 ∈ ( 𝑂 ‘ { 𝑥 } ) 𝑣 = ( 𝑤 ( +g ‘ 𝑈 ) ( 𝑘 ( ·𝑠 ‘ 𝑈 ) 𝑥 ) ) ) ) ) |
18 |
1 2 3 4 13 14 15 16 5 6 7 8 9 10 17 12
|
lcf1o |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑉 ∖ { 0 } ) ↦ ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) ∃ 𝑤 ∈ ( 𝑂 ‘ { 𝑥 } ) 𝑣 = ( 𝑤 ( +g ‘ 𝑈 ) ( 𝑘 ( ·𝑠 ‘ 𝑈 ) 𝑥 ) ) ) ) ) : ( 𝑉 ∖ { 0 } ) –1-1-onto→ ( 𝐶 ∖ { 𝑄 } ) ) |
19 |
1 3 2 4 13 14 5 15 16 11 12
|
hvmapfval |
⊢ ( 𝜑 → 𝑀 = ( 𝑥 ∈ ( 𝑉 ∖ { 0 } ) ↦ ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) ∃ 𝑤 ∈ ( 𝑂 ‘ { 𝑥 } ) 𝑣 = ( 𝑤 ( +g ‘ 𝑈 ) ( 𝑘 ( ·𝑠 ‘ 𝑈 ) 𝑥 ) ) ) ) ) ) |
20 |
19
|
f1oeq1d |
⊢ ( 𝜑 → ( 𝑀 : ( 𝑉 ∖ { 0 } ) –1-1-onto→ ( 𝐶 ∖ { 𝑄 } ) ↔ ( 𝑥 ∈ ( 𝑉 ∖ { 0 } ) ↦ ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) ∃ 𝑤 ∈ ( 𝑂 ‘ { 𝑥 } ) 𝑣 = ( 𝑤 ( +g ‘ 𝑈 ) ( 𝑘 ( ·𝑠 ‘ 𝑈 ) 𝑥 ) ) ) ) ) : ( 𝑉 ∖ { 0 } ) –1-1-onto→ ( 𝐶 ∖ { 𝑄 } ) ) ) |
21 |
18 20
|
mpbird |
⊢ ( 𝜑 → 𝑀 : ( 𝑉 ∖ { 0 } ) –1-1-onto→ ( 𝐶 ∖ { 𝑄 } ) ) |