Step |
Hyp |
Ref |
Expression |
1 |
|
hvmap1o.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
hvmap1o.o |
⊢ 𝑂 = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
hvmap1o.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
hvmap1o.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
5 |
|
hvmap1o.z |
⊢ 0 = ( 0g ‘ 𝑈 ) |
6 |
|
hvmap1o.f |
⊢ 𝐹 = ( LFnl ‘ 𝑈 ) |
7 |
|
hvmap1o.l |
⊢ 𝐿 = ( LKer ‘ 𝑈 ) |
8 |
|
hvmap1o.d |
⊢ 𝐷 = ( LDual ‘ 𝑈 ) |
9 |
|
hvmap1o.q |
⊢ 𝑄 = ( 0g ‘ 𝐷 ) |
10 |
|
hvmap1o.c |
⊢ 𝐶 = { 𝑓 ∈ 𝐹 ∣ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) } |
11 |
|
hvmap1o.m |
⊢ 𝑀 = ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) |
12 |
|
hvmap1o.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
13 |
|
hvmapcl.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
14 |
1 2 3 4 5 6 7 8 9 10 11 12
|
hvmap1o |
⊢ ( 𝜑 → 𝑀 : ( 𝑉 ∖ { 0 } ) –1-1-onto→ ( 𝐶 ∖ { 𝑄 } ) ) |
15 |
|
f1of |
⊢ ( 𝑀 : ( 𝑉 ∖ { 0 } ) –1-1-onto→ ( 𝐶 ∖ { 𝑄 } ) → 𝑀 : ( 𝑉 ∖ { 0 } ) ⟶ ( 𝐶 ∖ { 𝑄 } ) ) |
16 |
14 15
|
syl |
⊢ ( 𝜑 → 𝑀 : ( 𝑉 ∖ { 0 } ) ⟶ ( 𝐶 ∖ { 𝑄 } ) ) |
17 |
16 13
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝑋 ) ∈ ( 𝐶 ∖ { 𝑄 } ) ) |