Metamath Proof Explorer


Theorem hvmapclN

Description: Closure of the vector to functional map. (Contributed by NM, 27-Mar-2015) (New usage is discouraged.)

Ref Expression
Hypotheses hvmap1o.h 𝐻 = ( LHyp ‘ 𝐾 )
hvmap1o.o 𝑂 = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
hvmap1o.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
hvmap1o.v 𝑉 = ( Base ‘ 𝑈 )
hvmap1o.z 0 = ( 0g𝑈 )
hvmap1o.f 𝐹 = ( LFnl ‘ 𝑈 )
hvmap1o.l 𝐿 = ( LKer ‘ 𝑈 )
hvmap1o.d 𝐷 = ( LDual ‘ 𝑈 )
hvmap1o.q 𝑄 = ( 0g𝐷 )
hvmap1o.c 𝐶 = { 𝑓𝐹 ∣ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) }
hvmap1o.m 𝑀 = ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 )
hvmap1o.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
hvmapcl.x ( 𝜑𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
Assertion hvmapclN ( 𝜑 → ( 𝑀𝑋 ) ∈ ( 𝐶 ∖ { 𝑄 } ) )

Proof

Step Hyp Ref Expression
1 hvmap1o.h 𝐻 = ( LHyp ‘ 𝐾 )
2 hvmap1o.o 𝑂 = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
3 hvmap1o.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
4 hvmap1o.v 𝑉 = ( Base ‘ 𝑈 )
5 hvmap1o.z 0 = ( 0g𝑈 )
6 hvmap1o.f 𝐹 = ( LFnl ‘ 𝑈 )
7 hvmap1o.l 𝐿 = ( LKer ‘ 𝑈 )
8 hvmap1o.d 𝐷 = ( LDual ‘ 𝑈 )
9 hvmap1o.q 𝑄 = ( 0g𝐷 )
10 hvmap1o.c 𝐶 = { 𝑓𝐹 ∣ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) }
11 hvmap1o.m 𝑀 = ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 )
12 hvmap1o.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
13 hvmapcl.x ( 𝜑𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
14 1 2 3 4 5 6 7 8 9 10 11 12 hvmap1o ( 𝜑𝑀 : ( 𝑉 ∖ { 0 } ) –1-1-onto→ ( 𝐶 ∖ { 𝑄 } ) )
15 f1of ( 𝑀 : ( 𝑉 ∖ { 0 } ) –1-1-onto→ ( 𝐶 ∖ { 𝑄 } ) → 𝑀 : ( 𝑉 ∖ { 0 } ) ⟶ ( 𝐶 ∖ { 𝑄 } ) )
16 14 15 syl ( 𝜑𝑀 : ( 𝑉 ∖ { 0 } ) ⟶ ( 𝐶 ∖ { 𝑄 } ) )
17 16 13 ffvelrnd ( 𝜑 → ( 𝑀𝑋 ) ∈ ( 𝐶 ∖ { 𝑄 } ) )