Description: Closure of the vector to functional map. (Contributed by NM, 27-Mar-2015) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | hvmap1o.h | |- H = ( LHyp ` K ) |
|
hvmap1o.o | |- O = ( ( ocH ` K ) ` W ) |
||
hvmap1o.u | |- U = ( ( DVecH ` K ) ` W ) |
||
hvmap1o.v | |- V = ( Base ` U ) |
||
hvmap1o.z | |- .0. = ( 0g ` U ) |
||
hvmap1o.f | |- F = ( LFnl ` U ) |
||
hvmap1o.l | |- L = ( LKer ` U ) |
||
hvmap1o.d | |- D = ( LDual ` U ) |
||
hvmap1o.q | |- Q = ( 0g ` D ) |
||
hvmap1o.c | |- C = { f e. F | ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) } |
||
hvmap1o.m | |- M = ( ( HVMap ` K ) ` W ) |
||
hvmap1o.k | |- ( ph -> ( K e. HL /\ W e. H ) ) |
||
hvmapcl.x | |- ( ph -> X e. ( V \ { .0. } ) ) |
||
Assertion | hvmapclN | |- ( ph -> ( M ` X ) e. ( C \ { Q } ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hvmap1o.h | |- H = ( LHyp ` K ) |
|
2 | hvmap1o.o | |- O = ( ( ocH ` K ) ` W ) |
|
3 | hvmap1o.u | |- U = ( ( DVecH ` K ) ` W ) |
|
4 | hvmap1o.v | |- V = ( Base ` U ) |
|
5 | hvmap1o.z | |- .0. = ( 0g ` U ) |
|
6 | hvmap1o.f | |- F = ( LFnl ` U ) |
|
7 | hvmap1o.l | |- L = ( LKer ` U ) |
|
8 | hvmap1o.d | |- D = ( LDual ` U ) |
|
9 | hvmap1o.q | |- Q = ( 0g ` D ) |
|
10 | hvmap1o.c | |- C = { f e. F | ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) } |
|
11 | hvmap1o.m | |- M = ( ( HVMap ` K ) ` W ) |
|
12 | hvmap1o.k | |- ( ph -> ( K e. HL /\ W e. H ) ) |
|
13 | hvmapcl.x | |- ( ph -> X e. ( V \ { .0. } ) ) |
|
14 | 1 2 3 4 5 6 7 8 9 10 11 12 | hvmap1o | |- ( ph -> M : ( V \ { .0. } ) -1-1-onto-> ( C \ { Q } ) ) |
15 | f1of | |- ( M : ( V \ { .0. } ) -1-1-onto-> ( C \ { Q } ) -> M : ( V \ { .0. } ) --> ( C \ { Q } ) ) |
|
16 | 14 15 | syl | |- ( ph -> M : ( V \ { .0. } ) --> ( C \ { Q } ) ) |
17 | 16 13 | ffvelrnd | |- ( ph -> ( M ` X ) e. ( C \ { Q } ) ) |