Metamath Proof Explorer


Theorem hvmapclN

Description: Closure of the vector to functional map. (Contributed by NM, 27-Mar-2015) (New usage is discouraged.)

Ref Expression
Hypotheses hvmap1o.h
|- H = ( LHyp ` K )
hvmap1o.o
|- O = ( ( ocH ` K ) ` W )
hvmap1o.u
|- U = ( ( DVecH ` K ) ` W )
hvmap1o.v
|- V = ( Base ` U )
hvmap1o.z
|- .0. = ( 0g ` U )
hvmap1o.f
|- F = ( LFnl ` U )
hvmap1o.l
|- L = ( LKer ` U )
hvmap1o.d
|- D = ( LDual ` U )
hvmap1o.q
|- Q = ( 0g ` D )
hvmap1o.c
|- C = { f e. F | ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) }
hvmap1o.m
|- M = ( ( HVMap ` K ) ` W )
hvmap1o.k
|- ( ph -> ( K e. HL /\ W e. H ) )
hvmapcl.x
|- ( ph -> X e. ( V \ { .0. } ) )
Assertion hvmapclN
|- ( ph -> ( M ` X ) e. ( C \ { Q } ) )

Proof

Step Hyp Ref Expression
1 hvmap1o.h
 |-  H = ( LHyp ` K )
2 hvmap1o.o
 |-  O = ( ( ocH ` K ) ` W )
3 hvmap1o.u
 |-  U = ( ( DVecH ` K ) ` W )
4 hvmap1o.v
 |-  V = ( Base ` U )
5 hvmap1o.z
 |-  .0. = ( 0g ` U )
6 hvmap1o.f
 |-  F = ( LFnl ` U )
7 hvmap1o.l
 |-  L = ( LKer ` U )
8 hvmap1o.d
 |-  D = ( LDual ` U )
9 hvmap1o.q
 |-  Q = ( 0g ` D )
10 hvmap1o.c
 |-  C = { f e. F | ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) }
11 hvmap1o.m
 |-  M = ( ( HVMap ` K ) ` W )
12 hvmap1o.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
13 hvmapcl.x
 |-  ( ph -> X e. ( V \ { .0. } ) )
14 1 2 3 4 5 6 7 8 9 10 11 12 hvmap1o
 |-  ( ph -> M : ( V \ { .0. } ) -1-1-onto-> ( C \ { Q } ) )
15 f1of
 |-  ( M : ( V \ { .0. } ) -1-1-onto-> ( C \ { Q } ) -> M : ( V \ { .0. } ) --> ( C \ { Q } ) )
16 14 15 syl
 |-  ( ph -> M : ( V \ { .0. } ) --> ( C \ { Q } ) )
17 16 13 ffvelrnd
 |-  ( ph -> ( M ` X ) e. ( C \ { Q } ) )