Step |
Hyp |
Ref |
Expression |
1 |
|
hvmap1o2.h |
|- H = ( LHyp ` K ) |
2 |
|
hvmap1o2.u |
|- U = ( ( DVecH ` K ) ` W ) |
3 |
|
hvmap1o2.v |
|- V = ( Base ` U ) |
4 |
|
hvmap1o2.z |
|- .0. = ( 0g ` U ) |
5 |
|
hvmap1o2.c |
|- C = ( ( LCDual ` K ) ` W ) |
6 |
|
hvmap1o2.f |
|- F = ( Base ` C ) |
7 |
|
hvmap1o2.o |
|- O = ( 0g ` C ) |
8 |
|
hvmap1o2.m |
|- M = ( ( HVMap ` K ) ` W ) |
9 |
|
hvmap1o2.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
10 |
|
eqid |
|- ( ( ocH ` K ) ` W ) = ( ( ocH ` K ) ` W ) |
11 |
|
eqid |
|- ( LFnl ` U ) = ( LFnl ` U ) |
12 |
|
eqid |
|- ( LKer ` U ) = ( LKer ` U ) |
13 |
|
eqid |
|- ( LDual ` U ) = ( LDual ` U ) |
14 |
|
eqid |
|- ( 0g ` ( LDual ` U ) ) = ( 0g ` ( LDual ` U ) ) |
15 |
|
eqid |
|- { f e. ( LFnl ` U ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` f ) ) ) = ( ( LKer ` U ) ` f ) } = { f e. ( LFnl ` U ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` f ) ) ) = ( ( LKer ` U ) ` f ) } |
16 |
1 10 2 3 4 11 12 13 14 15 8 9
|
hvmap1o |
|- ( ph -> M : ( V \ { .0. } ) -1-1-onto-> ( { f e. ( LFnl ` U ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` f ) ) ) = ( ( LKer ` U ) ` f ) } \ { ( 0g ` ( LDual ` U ) ) } ) ) |
17 |
1 10 5 6 2 11 12 15 9
|
lcdvbase |
|- ( ph -> F = { f e. ( LFnl ` U ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` f ) ) ) = ( ( LKer ` U ) ` f ) } ) |
18 |
1 2 13 14 5 7 9
|
lcd0v2 |
|- ( ph -> O = ( 0g ` ( LDual ` U ) ) ) |
19 |
18
|
sneqd |
|- ( ph -> { O } = { ( 0g ` ( LDual ` U ) ) } ) |
20 |
17 19
|
difeq12d |
|- ( ph -> ( F \ { O } ) = ( { f e. ( LFnl ` U ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` f ) ) ) = ( ( LKer ` U ) ` f ) } \ { ( 0g ` ( LDual ` U ) ) } ) ) |
21 |
|
f1oeq3 |
|- ( ( F \ { O } ) = ( { f e. ( LFnl ` U ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` f ) ) ) = ( ( LKer ` U ) ` f ) } \ { ( 0g ` ( LDual ` U ) ) } ) -> ( M : ( V \ { .0. } ) -1-1-onto-> ( F \ { O } ) <-> M : ( V \ { .0. } ) -1-1-onto-> ( { f e. ( LFnl ` U ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` f ) ) ) = ( ( LKer ` U ) ` f ) } \ { ( 0g ` ( LDual ` U ) ) } ) ) ) |
22 |
20 21
|
syl |
|- ( ph -> ( M : ( V \ { .0. } ) -1-1-onto-> ( F \ { O } ) <-> M : ( V \ { .0. } ) -1-1-onto-> ( { f e. ( LFnl ` U ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` f ) ) ) = ( ( LKer ` U ) ` f ) } \ { ( 0g ` ( LDual ` U ) ) } ) ) ) |
23 |
16 22
|
mpbird |
|- ( ph -> M : ( V \ { .0. } ) -1-1-onto-> ( F \ { O } ) ) |