Metamath Proof Explorer


Theorem hvmap1o2

Description: The vector to functional map provides a bijection from nonzero vectors V to nonzero functionals with closed kernels C . (Contributed by NM, 27-Mar-2015)

Ref Expression
Hypotheses hvmap1o2.h
|- H = ( LHyp ` K )
hvmap1o2.u
|- U = ( ( DVecH ` K ) ` W )
hvmap1o2.v
|- V = ( Base ` U )
hvmap1o2.z
|- .0. = ( 0g ` U )
hvmap1o2.c
|- C = ( ( LCDual ` K ) ` W )
hvmap1o2.f
|- F = ( Base ` C )
hvmap1o2.o
|- O = ( 0g ` C )
hvmap1o2.m
|- M = ( ( HVMap ` K ) ` W )
hvmap1o2.k
|- ( ph -> ( K e. HL /\ W e. H ) )
Assertion hvmap1o2
|- ( ph -> M : ( V \ { .0. } ) -1-1-onto-> ( F \ { O } ) )

Proof

Step Hyp Ref Expression
1 hvmap1o2.h
 |-  H = ( LHyp ` K )
2 hvmap1o2.u
 |-  U = ( ( DVecH ` K ) ` W )
3 hvmap1o2.v
 |-  V = ( Base ` U )
4 hvmap1o2.z
 |-  .0. = ( 0g ` U )
5 hvmap1o2.c
 |-  C = ( ( LCDual ` K ) ` W )
6 hvmap1o2.f
 |-  F = ( Base ` C )
7 hvmap1o2.o
 |-  O = ( 0g ` C )
8 hvmap1o2.m
 |-  M = ( ( HVMap ` K ) ` W )
9 hvmap1o2.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
10 eqid
 |-  ( ( ocH ` K ) ` W ) = ( ( ocH ` K ) ` W )
11 eqid
 |-  ( LFnl ` U ) = ( LFnl ` U )
12 eqid
 |-  ( LKer ` U ) = ( LKer ` U )
13 eqid
 |-  ( LDual ` U ) = ( LDual ` U )
14 eqid
 |-  ( 0g ` ( LDual ` U ) ) = ( 0g ` ( LDual ` U ) )
15 eqid
 |-  { f e. ( LFnl ` U ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` f ) ) ) = ( ( LKer ` U ) ` f ) } = { f e. ( LFnl ` U ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` f ) ) ) = ( ( LKer ` U ) ` f ) }
16 1 10 2 3 4 11 12 13 14 15 8 9 hvmap1o
 |-  ( ph -> M : ( V \ { .0. } ) -1-1-onto-> ( { f e. ( LFnl ` U ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` f ) ) ) = ( ( LKer ` U ) ` f ) } \ { ( 0g ` ( LDual ` U ) ) } ) )
17 1 10 5 6 2 11 12 15 9 lcdvbase
 |-  ( ph -> F = { f e. ( LFnl ` U ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` f ) ) ) = ( ( LKer ` U ) ` f ) } )
18 1 2 13 14 5 7 9 lcd0v2
 |-  ( ph -> O = ( 0g ` ( LDual ` U ) ) )
19 18 sneqd
 |-  ( ph -> { O } = { ( 0g ` ( LDual ` U ) ) } )
20 17 19 difeq12d
 |-  ( ph -> ( F \ { O } ) = ( { f e. ( LFnl ` U ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` f ) ) ) = ( ( LKer ` U ) ` f ) } \ { ( 0g ` ( LDual ` U ) ) } ) )
21 f1oeq3
 |-  ( ( F \ { O } ) = ( { f e. ( LFnl ` U ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` f ) ) ) = ( ( LKer ` U ) ` f ) } \ { ( 0g ` ( LDual ` U ) ) } ) -> ( M : ( V \ { .0. } ) -1-1-onto-> ( F \ { O } ) <-> M : ( V \ { .0. } ) -1-1-onto-> ( { f e. ( LFnl ` U ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` f ) ) ) = ( ( LKer ` U ) ` f ) } \ { ( 0g ` ( LDual ` U ) ) } ) ) )
22 20 21 syl
 |-  ( ph -> ( M : ( V \ { .0. } ) -1-1-onto-> ( F \ { O } ) <-> M : ( V \ { .0. } ) -1-1-onto-> ( { f e. ( LFnl ` U ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` f ) ) ) = ( ( LKer ` U ) ` f ) } \ { ( 0g ` ( LDual ` U ) ) } ) ) )
23 16 22 mpbird
 |-  ( ph -> M : ( V \ { .0. } ) -1-1-onto-> ( F \ { O } ) )