Metamath Proof Explorer


Theorem hvmap1o2

Description: The vector to functional map provides a bijection from nonzero vectors V to nonzero functionals with closed kernels C . (Contributed by NM, 27-Mar-2015)

Ref Expression
Hypotheses hvmap1o2.h H=LHypK
hvmap1o2.u U=DVecHKW
hvmap1o2.v V=BaseU
hvmap1o2.z 0˙=0U
hvmap1o2.c C=LCDualKW
hvmap1o2.f F=BaseC
hvmap1o2.o O=0C
hvmap1o2.m M=HVMapKW
hvmap1o2.k φKHLWH
Assertion hvmap1o2 φM:V0˙1-1 ontoFO

Proof

Step Hyp Ref Expression
1 hvmap1o2.h H=LHypK
2 hvmap1o2.u U=DVecHKW
3 hvmap1o2.v V=BaseU
4 hvmap1o2.z 0˙=0U
5 hvmap1o2.c C=LCDualKW
6 hvmap1o2.f F=BaseC
7 hvmap1o2.o O=0C
8 hvmap1o2.m M=HVMapKW
9 hvmap1o2.k φKHLWH
10 eqid ocHKW=ocHKW
11 eqid LFnlU=LFnlU
12 eqid LKerU=LKerU
13 eqid LDualU=LDualU
14 eqid 0LDualU=0LDualU
15 eqid fLFnlU|ocHKWocHKWLKerUf=LKerUf=fLFnlU|ocHKWocHKWLKerUf=LKerUf
16 1 10 2 3 4 11 12 13 14 15 8 9 hvmap1o φM:V0˙1-1 ontofLFnlU|ocHKWocHKWLKerUf=LKerUf0LDualU
17 1 10 5 6 2 11 12 15 9 lcdvbase φF=fLFnlU|ocHKWocHKWLKerUf=LKerUf
18 1 2 13 14 5 7 9 lcd0v2 φO=0LDualU
19 18 sneqd φO=0LDualU
20 17 19 difeq12d φFO=fLFnlU|ocHKWocHKWLKerUf=LKerUf0LDualU
21 f1oeq3 FO=fLFnlU|ocHKWocHKWLKerUf=LKerUf0LDualUM:V0˙1-1 ontoFOM:V0˙1-1 ontofLFnlU|ocHKWocHKWLKerUf=LKerUf0LDualU
22 20 21 syl φM:V0˙1-1 ontoFOM:V0˙1-1 ontofLFnlU|ocHKWocHKWLKerUf=LKerUf0LDualU
23 16 22 mpbird φM:V0˙1-1 ontoFO