Step |
Hyp |
Ref |
Expression |
1 |
|
hvmap1o2.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
hvmap1o2.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
hvmap1o2.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
4 |
|
hvmap1o2.z |
⊢ 0 = ( 0g ‘ 𝑈 ) |
5 |
|
hvmap1o2.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
|
hvmap1o2.f |
⊢ 𝐹 = ( Base ‘ 𝐶 ) |
7 |
|
hvmap1o2.o |
⊢ 𝑂 = ( 0g ‘ 𝐶 ) |
8 |
|
hvmap1o2.m |
⊢ 𝑀 = ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) |
9 |
|
hvmap1o2.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
10 |
|
eqid |
⊢ ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
11 |
|
eqid |
⊢ ( LFnl ‘ 𝑈 ) = ( LFnl ‘ 𝑈 ) |
12 |
|
eqid |
⊢ ( LKer ‘ 𝑈 ) = ( LKer ‘ 𝑈 ) |
13 |
|
eqid |
⊢ ( LDual ‘ 𝑈 ) = ( LDual ‘ 𝑈 ) |
14 |
|
eqid |
⊢ ( 0g ‘ ( LDual ‘ 𝑈 ) ) = ( 0g ‘ ( LDual ‘ 𝑈 ) ) |
15 |
|
eqid |
⊢ { 𝑓 ∈ ( LFnl ‘ 𝑈 ) ∣ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LKer ‘ 𝑈 ) ‘ 𝑓 ) ) ) = ( ( LKer ‘ 𝑈 ) ‘ 𝑓 ) } = { 𝑓 ∈ ( LFnl ‘ 𝑈 ) ∣ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LKer ‘ 𝑈 ) ‘ 𝑓 ) ) ) = ( ( LKer ‘ 𝑈 ) ‘ 𝑓 ) } |
16 |
1 10 2 3 4 11 12 13 14 15 8 9
|
hvmap1o |
⊢ ( 𝜑 → 𝑀 : ( 𝑉 ∖ { 0 } ) –1-1-onto→ ( { 𝑓 ∈ ( LFnl ‘ 𝑈 ) ∣ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LKer ‘ 𝑈 ) ‘ 𝑓 ) ) ) = ( ( LKer ‘ 𝑈 ) ‘ 𝑓 ) } ∖ { ( 0g ‘ ( LDual ‘ 𝑈 ) ) } ) ) |
17 |
1 10 5 6 2 11 12 15 9
|
lcdvbase |
⊢ ( 𝜑 → 𝐹 = { 𝑓 ∈ ( LFnl ‘ 𝑈 ) ∣ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LKer ‘ 𝑈 ) ‘ 𝑓 ) ) ) = ( ( LKer ‘ 𝑈 ) ‘ 𝑓 ) } ) |
18 |
1 2 13 14 5 7 9
|
lcd0v2 |
⊢ ( 𝜑 → 𝑂 = ( 0g ‘ ( LDual ‘ 𝑈 ) ) ) |
19 |
18
|
sneqd |
⊢ ( 𝜑 → { 𝑂 } = { ( 0g ‘ ( LDual ‘ 𝑈 ) ) } ) |
20 |
17 19
|
difeq12d |
⊢ ( 𝜑 → ( 𝐹 ∖ { 𝑂 } ) = ( { 𝑓 ∈ ( LFnl ‘ 𝑈 ) ∣ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LKer ‘ 𝑈 ) ‘ 𝑓 ) ) ) = ( ( LKer ‘ 𝑈 ) ‘ 𝑓 ) } ∖ { ( 0g ‘ ( LDual ‘ 𝑈 ) ) } ) ) |
21 |
|
f1oeq3 |
⊢ ( ( 𝐹 ∖ { 𝑂 } ) = ( { 𝑓 ∈ ( LFnl ‘ 𝑈 ) ∣ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LKer ‘ 𝑈 ) ‘ 𝑓 ) ) ) = ( ( LKer ‘ 𝑈 ) ‘ 𝑓 ) } ∖ { ( 0g ‘ ( LDual ‘ 𝑈 ) ) } ) → ( 𝑀 : ( 𝑉 ∖ { 0 } ) –1-1-onto→ ( 𝐹 ∖ { 𝑂 } ) ↔ 𝑀 : ( 𝑉 ∖ { 0 } ) –1-1-onto→ ( { 𝑓 ∈ ( LFnl ‘ 𝑈 ) ∣ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LKer ‘ 𝑈 ) ‘ 𝑓 ) ) ) = ( ( LKer ‘ 𝑈 ) ‘ 𝑓 ) } ∖ { ( 0g ‘ ( LDual ‘ 𝑈 ) ) } ) ) ) |
22 |
20 21
|
syl |
⊢ ( 𝜑 → ( 𝑀 : ( 𝑉 ∖ { 0 } ) –1-1-onto→ ( 𝐹 ∖ { 𝑂 } ) ↔ 𝑀 : ( 𝑉 ∖ { 0 } ) –1-1-onto→ ( { 𝑓 ∈ ( LFnl ‘ 𝑈 ) ∣ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LKer ‘ 𝑈 ) ‘ 𝑓 ) ) ) = ( ( LKer ‘ 𝑈 ) ‘ 𝑓 ) } ∖ { ( 0g ‘ ( LDual ‘ 𝑈 ) ) } ) ) ) |
23 |
16 22
|
mpbird |
⊢ ( 𝜑 → 𝑀 : ( 𝑉 ∖ { 0 } ) –1-1-onto→ ( 𝐹 ∖ { 𝑂 } ) ) |