Metamath Proof Explorer


Theorem hvmapcl2

Description: Closure of the vector to functional map. (Contributed by NM, 27-Mar-2015)

Ref Expression
Hypotheses hvmap1o2.h H = LHyp K
hvmap1o2.u U = DVecH K W
hvmap1o2.v V = Base U
hvmap1o2.z 0 ˙ = 0 U
hvmap1o2.c C = LCDual K W
hvmap1o2.f F = Base C
hvmap1o2.o O = 0 C
hvmap1o2.m M = HVMap K W
hvmap1o2.k φ K HL W H
hvmapcl2.x φ X V 0 ˙
Assertion hvmapcl2 φ M X F O

Proof

Step Hyp Ref Expression
1 hvmap1o2.h H = LHyp K
2 hvmap1o2.u U = DVecH K W
3 hvmap1o2.v V = Base U
4 hvmap1o2.z 0 ˙ = 0 U
5 hvmap1o2.c C = LCDual K W
6 hvmap1o2.f F = Base C
7 hvmap1o2.o O = 0 C
8 hvmap1o2.m M = HVMap K W
9 hvmap1o2.k φ K HL W H
10 hvmapcl2.x φ X V 0 ˙
11 1 2 3 4 5 6 7 8 9 hvmap1o2 φ M : V 0 ˙ 1-1 onto F O
12 f1of M : V 0 ˙ 1-1 onto F O M : V 0 ˙ F O
13 11 12 syl φ M : V 0 ˙ F O
14 13 10 ffvelrnd φ M X F O