Metamath Proof Explorer


Theorem hvmapcl2

Description: Closure of the vector to functional map. (Contributed by NM, 27-Mar-2015)

Ref Expression
Hypotheses hvmap1o2.h H=LHypK
hvmap1o2.u U=DVecHKW
hvmap1o2.v V=BaseU
hvmap1o2.z 0˙=0U
hvmap1o2.c C=LCDualKW
hvmap1o2.f F=BaseC
hvmap1o2.o O=0C
hvmap1o2.m M=HVMapKW
hvmap1o2.k φKHLWH
hvmapcl2.x φXV0˙
Assertion hvmapcl2 φMXFO

Proof

Step Hyp Ref Expression
1 hvmap1o2.h H=LHypK
2 hvmap1o2.u U=DVecHKW
3 hvmap1o2.v V=BaseU
4 hvmap1o2.z 0˙=0U
5 hvmap1o2.c C=LCDualKW
6 hvmap1o2.f F=BaseC
7 hvmap1o2.o O=0C
8 hvmap1o2.m M=HVMapKW
9 hvmap1o2.k φKHLWH
10 hvmapcl2.x φXV0˙
11 1 2 3 4 5 6 7 8 9 hvmap1o2 φM:V0˙1-1 ontoFO
12 f1of M:V0˙1-1 ontoFOM:V0˙FO
13 11 12 syl φM:V0˙FO
14 13 10 ffvelcdmd φMXFO