Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of involution and inner product from a Hilbert lattice
hvmapcl2
Next ⟩
hvmaplfl
Metamath Proof Explorer
Ascii
Unicode
Theorem
hvmapcl2
Description:
Closure of the vector to functional map.
(Contributed by
NM
, 27-Mar-2015)
Ref
Expression
Hypotheses
hvmap1o2.h
⊢
H
=
LHyp
⁡
K
hvmap1o2.u
⊢
U
=
DVecH
⁡
K
⁡
W
hvmap1o2.v
⊢
V
=
Base
U
hvmap1o2.z
⊢
0
˙
=
0
U
hvmap1o2.c
⊢
C
=
LCDual
⁡
K
⁡
W
hvmap1o2.f
⊢
F
=
Base
C
hvmap1o2.o
⊢
O
=
0
C
hvmap1o2.m
⊢
M
=
HVMap
⁡
K
⁡
W
hvmap1o2.k
⊢
φ
→
K
∈
HL
∧
W
∈
H
hvmapcl2.x
⊢
φ
→
X
∈
V
∖
0
˙
Assertion
hvmapcl2
⊢
φ
→
M
⁡
X
∈
F
∖
O
Proof
Step
Hyp
Ref
Expression
1
hvmap1o2.h
⊢
H
=
LHyp
⁡
K
2
hvmap1o2.u
⊢
U
=
DVecH
⁡
K
⁡
W
3
hvmap1o2.v
⊢
V
=
Base
U
4
hvmap1o2.z
⊢
0
˙
=
0
U
5
hvmap1o2.c
⊢
C
=
LCDual
⁡
K
⁡
W
6
hvmap1o2.f
⊢
F
=
Base
C
7
hvmap1o2.o
⊢
O
=
0
C
8
hvmap1o2.m
⊢
M
=
HVMap
⁡
K
⁡
W
9
hvmap1o2.k
⊢
φ
→
K
∈
HL
∧
W
∈
H
10
hvmapcl2.x
⊢
φ
→
X
∈
V
∖
0
˙
11
1
2
3
4
5
6
7
8
9
hvmap1o2
⊢
φ
→
M
:
V
∖
0
˙
⟶
1-1 onto
F
∖
O
12
f1of
⊢
M
:
V
∖
0
˙
⟶
1-1 onto
F
∖
O
→
M
:
V
∖
0
˙
⟶
F
∖
O
13
11
12
syl
⊢
φ
→
M
:
V
∖
0
˙
⟶
F
∖
O
14
13
10
ffvelrnd
⊢
φ
→
M
⁡
X
∈
F
∖
O