| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmapval3.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | hdmapval3.e | ⊢ 𝐸  =  〈 (  I   ↾  ( Base ‘ 𝐾 ) ) ,  (  I   ↾  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 | 
						
							| 3 |  | hdmapval3.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 4 |  | hdmapval3.v | ⊢ 𝑉  =  ( Base ‘ 𝑈 ) | 
						
							| 5 |  | hdmapval3.n | ⊢ 𝑁  =  ( LSpan ‘ 𝑈 ) | 
						
							| 6 |  | hdmapval3.c | ⊢ 𝐶  =  ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 7 |  | hdmapval3.d | ⊢ 𝐷  =  ( Base ‘ 𝐶 ) | 
						
							| 8 |  | hdmapval3.j | ⊢ 𝐽  =  ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 9 |  | hdmapval3.i | ⊢ 𝐼  =  ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 10 |  | hdmapval3.s | ⊢ 𝑆  =  ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 11 |  | hdmapval3.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 12 |  | hdmapval3.te | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑇 } )  ≠  ( 𝑁 ‘ { 𝐸 } ) ) | 
						
							| 13 |  | hdmapval3lem.t | ⊢ ( 𝜑  →  𝑇  ∈  ( 𝑉  ∖  { ( 0g ‘ 𝑈 ) } ) ) | 
						
							| 14 |  | hdmapval3lem.x | ⊢ ( 𝜑  →  𝑥  ∈  𝑉 ) | 
						
							| 15 |  | hdmapval3lem.xn | ⊢ ( 𝜑  →  ¬  𝑥  ∈  ( 𝑁 ‘ { 𝐸 ,  𝑇 } ) ) | 
						
							| 16 |  | eqid | ⊢ ( 0g ‘ 𝑈 )  =  ( 0g ‘ 𝑈 ) | 
						
							| 17 |  | eqid | ⊢ ( LSpan ‘ 𝐶 )  =  ( LSpan ‘ 𝐶 ) | 
						
							| 18 |  | eqid | ⊢ ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )  =  ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 19 |  | eqid | ⊢ ( 0g ‘ 𝐶 )  =  ( 0g ‘ 𝐶 ) | 
						
							| 20 |  | eqid | ⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 ) | 
						
							| 21 |  | eqid | ⊢ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )  =  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 22 | 1 20 21 3 4 16 2 11 | dvheveccl | ⊢ ( 𝜑  →  𝐸  ∈  ( 𝑉  ∖  { ( 0g ‘ 𝑈 ) } ) ) | 
						
							| 23 | 1 3 4 16 6 7 19 8 11 22 | hvmapcl2 | ⊢ ( 𝜑  →  ( 𝐽 ‘ 𝐸 )  ∈  ( 𝐷  ∖  { ( 0g ‘ 𝐶 ) } ) ) | 
						
							| 24 | 23 | eldifad | ⊢ ( 𝜑  →  ( 𝐽 ‘ 𝐸 )  ∈  𝐷 ) | 
						
							| 25 | 1 3 4 16 5 6 17 18 8 11 22 | mapdhvmap | ⊢ ( 𝜑  →  ( ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑁 ‘ { 𝐸 } ) )  =  ( ( LSpan ‘ 𝐶 ) ‘ { ( 𝐽 ‘ 𝐸 ) } ) ) | 
						
							| 26 | 1 3 11 | dvhlvec | ⊢ ( 𝜑  →  𝑈  ∈  LVec ) | 
						
							| 27 | 22 | eldifad | ⊢ ( 𝜑  →  𝐸  ∈  𝑉 ) | 
						
							| 28 | 13 | eldifad | ⊢ ( 𝜑  →  𝑇  ∈  𝑉 ) | 
						
							| 29 | 4 5 26 14 27 28 15 | lspindpi | ⊢ ( 𝜑  →  ( ( 𝑁 ‘ { 𝑥 } )  ≠  ( 𝑁 ‘ { 𝐸 } )  ∧  ( 𝑁 ‘ { 𝑥 } )  ≠  ( 𝑁 ‘ { 𝑇 } ) ) ) | 
						
							| 30 | 29 | simpld | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑥 } )  ≠  ( 𝑁 ‘ { 𝐸 } ) ) | 
						
							| 31 | 30 | necomd | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝐸 } )  ≠  ( 𝑁 ‘ { 𝑥 } ) ) | 
						
							| 32 | 1 3 4 16 5 6 7 17 18 9 11 24 25 31 22 14 | hdmap1cl | ⊢ ( 𝜑  →  ( 𝐼 ‘ 〈 𝐸 ,  ( 𝐽 ‘ 𝐸 ) ,  𝑥 〉 )  ∈  𝐷 ) | 
						
							| 33 |  | eqidd | ⊢ ( 𝜑  →  ( 𝐼 ‘ 〈 𝐸 ,  ( 𝐽 ‘ 𝐸 ) ,  𝑥 〉 )  =  ( 𝐼 ‘ 〈 𝐸 ,  ( 𝐽 ‘ 𝐸 ) ,  𝑥 〉 ) ) | 
						
							| 34 |  | eqid | ⊢ ( -g ‘ 𝑈 )  =  ( -g ‘ 𝑈 ) | 
						
							| 35 |  | eqid | ⊢ ( -g ‘ 𝐶 )  =  ( -g ‘ 𝐶 ) | 
						
							| 36 |  | eqid | ⊢ ( LSubSp ‘ 𝑈 )  =  ( LSubSp ‘ 𝑈 ) | 
						
							| 37 | 1 3 11 | dvhlmod | ⊢ ( 𝜑  →  𝑈  ∈  LMod ) | 
						
							| 38 | 4 36 5 37 27 28 | lspprcl | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝐸 ,  𝑇 } )  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 39 | 16 36 37 38 14 15 | lssneln0 | ⊢ ( 𝜑  →  𝑥  ∈  ( 𝑉  ∖  { ( 0g ‘ 𝑈 ) } ) ) | 
						
							| 40 | 1 3 4 34 16 5 6 7 35 17 18 9 11 22 24 39 32 31 25 | hdmap1eq | ⊢ ( 𝜑  →  ( ( 𝐼 ‘ 〈 𝐸 ,  ( 𝐽 ‘ 𝐸 ) ,  𝑥 〉 )  =  ( 𝐼 ‘ 〈 𝐸 ,  ( 𝐽 ‘ 𝐸 ) ,  𝑥 〉 )  ↔  ( ( ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑁 ‘ { 𝑥 } ) )  =  ( ( LSpan ‘ 𝐶 ) ‘ { ( 𝐼 ‘ 〈 𝐸 ,  ( 𝐽 ‘ 𝐸 ) ,  𝑥 〉 ) } )  ∧  ( ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑁 ‘ { ( 𝐸 ( -g ‘ 𝑈 ) 𝑥 ) } ) )  =  ( ( LSpan ‘ 𝐶 ) ‘ { ( ( 𝐽 ‘ 𝐸 ) ( -g ‘ 𝐶 ) ( 𝐼 ‘ 〈 𝐸 ,  ( 𝐽 ‘ 𝐸 ) ,  𝑥 〉 ) ) } ) ) ) ) | 
						
							| 41 | 33 40 | mpbid | ⊢ ( 𝜑  →  ( ( ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑁 ‘ { 𝑥 } ) )  =  ( ( LSpan ‘ 𝐶 ) ‘ { ( 𝐼 ‘ 〈 𝐸 ,  ( 𝐽 ‘ 𝐸 ) ,  𝑥 〉 ) } )  ∧  ( ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑁 ‘ { ( 𝐸 ( -g ‘ 𝑈 ) 𝑥 ) } ) )  =  ( ( LSpan ‘ 𝐶 ) ‘ { ( ( 𝐽 ‘ 𝐸 ) ( -g ‘ 𝐶 ) ( 𝐼 ‘ 〈 𝐸 ,  ( 𝐽 ‘ 𝐸 ) ,  𝑥 〉 ) ) } ) ) ) | 
						
							| 42 | 41 | simpld | ⊢ ( 𝜑  →  ( ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑁 ‘ { 𝑥 } ) )  =  ( ( LSpan ‘ 𝐶 ) ‘ { ( 𝐼 ‘ 〈 𝐸 ,  ( 𝐽 ‘ 𝐸 ) ,  𝑥 〉 ) } ) ) | 
						
							| 43 | 12 | necomd | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝐸 } )  ≠  ( 𝑁 ‘ { 𝑇 } ) ) | 
						
							| 44 | 4 5 37 27 28 | lspprid1 | ⊢ ( 𝜑  →  𝐸  ∈  ( 𝑁 ‘ { 𝐸 ,  𝑇 } ) ) | 
						
							| 45 | 36 5 37 38 44 | ellspsn5 | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝐸 } )  ⊆  ( 𝑁 ‘ { 𝐸 ,  𝑇 } ) ) | 
						
							| 46 | 45 45 | unssd | ⊢ ( 𝜑  →  ( ( 𝑁 ‘ { 𝐸 } )  ∪  ( 𝑁 ‘ { 𝐸 } ) )  ⊆  ( 𝑁 ‘ { 𝐸 ,  𝑇 } ) ) | 
						
							| 47 | 46 15 | ssneldd | ⊢ ( 𝜑  →  ¬  𝑥  ∈  ( ( 𝑁 ‘ { 𝐸 } )  ∪  ( 𝑁 ‘ { 𝐸 } ) ) ) | 
						
							| 48 | 1 2 3 4 5 6 7 8 9 10 11 27 14 47 | hdmapval2 | ⊢ ( 𝜑  →  ( 𝑆 ‘ 𝐸 )  =  ( 𝐼 ‘ 〈 𝑥 ,  ( 𝐼 ‘ 〈 𝐸 ,  ( 𝐽 ‘ 𝐸 ) ,  𝑥 〉 ) ,  𝐸 〉 ) ) | 
						
							| 49 | 1 2 8 10 11 | hdmapevec | ⊢ ( 𝜑  →  ( 𝑆 ‘ 𝐸 )  =  ( 𝐽 ‘ 𝐸 ) ) | 
						
							| 50 | 48 49 | eqtr3d | ⊢ ( 𝜑  →  ( 𝐼 ‘ 〈 𝑥 ,  ( 𝐼 ‘ 〈 𝐸 ,  ( 𝐽 ‘ 𝐸 ) ,  𝑥 〉 ) ,  𝐸 〉 )  =  ( 𝐽 ‘ 𝐸 ) ) | 
						
							| 51 | 4 5 37 27 28 | lspprid2 | ⊢ ( 𝜑  →  𝑇  ∈  ( 𝑁 ‘ { 𝐸 ,  𝑇 } ) ) | 
						
							| 52 | 36 5 37 38 51 | ellspsn5 | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑇 } )  ⊆  ( 𝑁 ‘ { 𝐸 ,  𝑇 } ) ) | 
						
							| 53 | 45 52 | unssd | ⊢ ( 𝜑  →  ( ( 𝑁 ‘ { 𝐸 } )  ∪  ( 𝑁 ‘ { 𝑇 } ) )  ⊆  ( 𝑁 ‘ { 𝐸 ,  𝑇 } ) ) | 
						
							| 54 | 53 15 | ssneldd | ⊢ ( 𝜑  →  ¬  𝑥  ∈  ( ( 𝑁 ‘ { 𝐸 } )  ∪  ( 𝑁 ‘ { 𝑇 } ) ) ) | 
						
							| 55 | 1 2 3 4 5 6 7 8 9 10 11 28 14 54 | hdmapval2 | ⊢ ( 𝜑  →  ( 𝑆 ‘ 𝑇 )  =  ( 𝐼 ‘ 〈 𝑥 ,  ( 𝐼 ‘ 〈 𝐸 ,  ( 𝐽 ‘ 𝐸 ) ,  𝑥 〉 ) ,  𝑇 〉 ) ) | 
						
							| 56 | 55 | eqcomd | ⊢ ( 𝜑  →  ( 𝐼 ‘ 〈 𝑥 ,  ( 𝐼 ‘ 〈 𝐸 ,  ( 𝐽 ‘ 𝐸 ) ,  𝑥 〉 ) ,  𝑇 〉 )  =  ( 𝑆 ‘ 𝑇 ) ) | 
						
							| 57 | 1 3 4 16 5 6 7 17 18 9 11 32 42 39 22 13 43 15 50 56 | hdmap1eq4N | ⊢ ( 𝜑  →  ( 𝐼 ‘ 〈 𝐸 ,  ( 𝐽 ‘ 𝐸 ) ,  𝑇 〉 )  =  ( 𝑆 ‘ 𝑇 ) ) | 
						
							| 58 | 57 | eqcomd | ⊢ ( 𝜑  →  ( 𝑆 ‘ 𝑇 )  =  ( 𝐼 ‘ 〈 𝐸 ,  ( 𝐽 ‘ 𝐸 ) ,  𝑇 〉 ) ) |