Metamath Proof Explorer


Theorem hdmapval3N

Description: Value of map from vectors to functionals at arguments not colinear with the reference vector E . (Contributed by NM, 17-May-2015) (New usage is discouraged.)

Ref Expression
Hypotheses hdmapval3.h 𝐻 = ( LHyp ‘ 𝐾 )
hdmapval3.e 𝐸 = ⟨ ( I ↾ ( Base ‘ 𝐾 ) ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) ⟩
hdmapval3.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
hdmapval3.v 𝑉 = ( Base ‘ 𝑈 )
hdmapval3.n 𝑁 = ( LSpan ‘ 𝑈 )
hdmapval3.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
hdmapval3.d 𝐷 = ( Base ‘ 𝐶 )
hdmapval3.j 𝐽 = ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 )
hdmapval3.i 𝐼 = ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 )
hdmapval3.s 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 )
hdmapval3.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
hdmapval3.te ( 𝜑 → ( 𝑁 ‘ { 𝑇 } ) ≠ ( 𝑁 ‘ { 𝐸 } ) )
hdmapval3.t ( 𝜑𝑇𝑉 )
Assertion hdmapval3N ( 𝜑 → ( 𝑆𝑇 ) = ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽𝐸 ) , 𝑇 ⟩ ) )

Proof

Step Hyp Ref Expression
1 hdmapval3.h 𝐻 = ( LHyp ‘ 𝐾 )
2 hdmapval3.e 𝐸 = ⟨ ( I ↾ ( Base ‘ 𝐾 ) ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) ⟩
3 hdmapval3.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
4 hdmapval3.v 𝑉 = ( Base ‘ 𝑈 )
5 hdmapval3.n 𝑁 = ( LSpan ‘ 𝑈 )
6 hdmapval3.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
7 hdmapval3.d 𝐷 = ( Base ‘ 𝐶 )
8 hdmapval3.j 𝐽 = ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 )
9 hdmapval3.i 𝐼 = ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 )
10 hdmapval3.s 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 )
11 hdmapval3.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
12 hdmapval3.te ( 𝜑 → ( 𝑁 ‘ { 𝑇 } ) ≠ ( 𝑁 ‘ { 𝐸 } ) )
13 hdmapval3.t ( 𝜑𝑇𝑉 )
14 fveq2 ( 𝑇 = ( 0g𝑈 ) → ( 𝑆𝑇 ) = ( 𝑆 ‘ ( 0g𝑈 ) ) )
15 oteq3 ( 𝑇 = ( 0g𝑈 ) → ⟨ 𝐸 , ( 𝐽𝐸 ) , 𝑇 ⟩ = ⟨ 𝐸 , ( 𝐽𝐸 ) , ( 0g𝑈 ) ⟩ )
16 15 fveq2d ( 𝑇 = ( 0g𝑈 ) → ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽𝐸 ) , 𝑇 ⟩ ) = ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽𝐸 ) , ( 0g𝑈 ) ⟩ ) )
17 14 16 eqeq12d ( 𝑇 = ( 0g𝑈 ) → ( ( 𝑆𝑇 ) = ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽𝐸 ) , 𝑇 ⟩ ) ↔ ( 𝑆 ‘ ( 0g𝑈 ) ) = ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽𝐸 ) , ( 0g𝑈 ) ⟩ ) ) )
18 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
19 eqid ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
20 eqid ( 0g𝑈 ) = ( 0g𝑈 )
21 1 18 19 3 4 20 2 11 dvheveccl ( 𝜑𝐸 ∈ ( 𝑉 ∖ { ( 0g𝑈 ) } ) )
22 21 eldifad ( 𝜑𝐸𝑉 )
23 1 3 4 5 11 22 13 dvh3dim ( 𝜑 → ∃ 𝑥𝑉 ¬ 𝑥 ∈ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) )
24 23 adantr ( ( 𝜑𝑇 ≠ ( 0g𝑈 ) ) → ∃ 𝑥𝑉 ¬ 𝑥 ∈ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) )
25 simp1l ( ( ( 𝜑𝑇 ≠ ( 0g𝑈 ) ) ∧ 𝑥𝑉 ∧ ¬ 𝑥 ∈ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ) → 𝜑 )
26 25 11 syl ( ( ( 𝜑𝑇 ≠ ( 0g𝑈 ) ) ∧ 𝑥𝑉 ∧ ¬ 𝑥 ∈ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
27 25 12 syl ( ( ( 𝜑𝑇 ≠ ( 0g𝑈 ) ) ∧ 𝑥𝑉 ∧ ¬ 𝑥 ∈ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ) → ( 𝑁 ‘ { 𝑇 } ) ≠ ( 𝑁 ‘ { 𝐸 } ) )
28 25 13 syl ( ( ( 𝜑𝑇 ≠ ( 0g𝑈 ) ) ∧ 𝑥𝑉 ∧ ¬ 𝑥 ∈ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ) → 𝑇𝑉 )
29 simp1r ( ( ( 𝜑𝑇 ≠ ( 0g𝑈 ) ) ∧ 𝑥𝑉 ∧ ¬ 𝑥 ∈ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ) → 𝑇 ≠ ( 0g𝑈 ) )
30 eldifsn ( 𝑇 ∈ ( 𝑉 ∖ { ( 0g𝑈 ) } ) ↔ ( 𝑇𝑉𝑇 ≠ ( 0g𝑈 ) ) )
31 28 29 30 sylanbrc ( ( ( 𝜑𝑇 ≠ ( 0g𝑈 ) ) ∧ 𝑥𝑉 ∧ ¬ 𝑥 ∈ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ) → 𝑇 ∈ ( 𝑉 ∖ { ( 0g𝑈 ) } ) )
32 simp2 ( ( ( 𝜑𝑇 ≠ ( 0g𝑈 ) ) ∧ 𝑥𝑉 ∧ ¬ 𝑥 ∈ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ) → 𝑥𝑉 )
33 simp3 ( ( ( 𝜑𝑇 ≠ ( 0g𝑈 ) ) ∧ 𝑥𝑉 ∧ ¬ 𝑥 ∈ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ) → ¬ 𝑥 ∈ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) )
34 1 2 3 4 5 6 7 8 9 10 26 27 31 32 33 hdmapval3lemN ( ( ( 𝜑𝑇 ≠ ( 0g𝑈 ) ) ∧ 𝑥𝑉 ∧ ¬ 𝑥 ∈ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ) → ( 𝑆𝑇 ) = ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽𝐸 ) , 𝑇 ⟩ ) )
35 34 rexlimdv3a ( ( 𝜑𝑇 ≠ ( 0g𝑈 ) ) → ( ∃ 𝑥𝑉 ¬ 𝑥 ∈ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) → ( 𝑆𝑇 ) = ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽𝐸 ) , 𝑇 ⟩ ) ) )
36 24 35 mpd ( ( 𝜑𝑇 ≠ ( 0g𝑈 ) ) → ( 𝑆𝑇 ) = ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽𝐸 ) , 𝑇 ⟩ ) )
37 eqid ( 0g𝐶 ) = ( 0g𝐶 )
38 1 3 20 6 37 10 11 hdmapval0 ( 𝜑 → ( 𝑆 ‘ ( 0g𝑈 ) ) = ( 0g𝐶 ) )
39 1 3 4 20 6 7 37 8 11 21 hvmapcl2 ( 𝜑 → ( 𝐽𝐸 ) ∈ ( 𝐷 ∖ { ( 0g𝐶 ) } ) )
40 39 eldifad ( 𝜑 → ( 𝐽𝐸 ) ∈ 𝐷 )
41 1 3 4 20 6 7 37 9 11 40 22 hdmap1val0 ( 𝜑 → ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽𝐸 ) , ( 0g𝑈 ) ⟩ ) = ( 0g𝐶 ) )
42 38 41 eqtr4d ( 𝜑 → ( 𝑆 ‘ ( 0g𝑈 ) ) = ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽𝐸 ) , ( 0g𝑈 ) ⟩ ) )
43 17 36 42 pm2.61ne ( 𝜑 → ( 𝑆𝑇 ) = ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽𝐸 ) , 𝑇 ⟩ ) )