| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmapval3.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | hdmapval3.e | ⊢ 𝐸  =  〈 (  I   ↾  ( Base ‘ 𝐾 ) ) ,  (  I   ↾  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 | 
						
							| 3 |  | hdmapval3.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 4 |  | hdmapval3.v | ⊢ 𝑉  =  ( Base ‘ 𝑈 ) | 
						
							| 5 |  | hdmapval3.n | ⊢ 𝑁  =  ( LSpan ‘ 𝑈 ) | 
						
							| 6 |  | hdmapval3.c | ⊢ 𝐶  =  ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 7 |  | hdmapval3.d | ⊢ 𝐷  =  ( Base ‘ 𝐶 ) | 
						
							| 8 |  | hdmapval3.j | ⊢ 𝐽  =  ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 9 |  | hdmapval3.i | ⊢ 𝐼  =  ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 10 |  | hdmapval3.s | ⊢ 𝑆  =  ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 11 |  | hdmapval3.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 12 |  | hdmapval3.te | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑇 } )  ≠  ( 𝑁 ‘ { 𝐸 } ) ) | 
						
							| 13 |  | hdmapval3.t | ⊢ ( 𝜑  →  𝑇  ∈  𝑉 ) | 
						
							| 14 |  | fveq2 | ⊢ ( 𝑇  =  ( 0g ‘ 𝑈 )  →  ( 𝑆 ‘ 𝑇 )  =  ( 𝑆 ‘ ( 0g ‘ 𝑈 ) ) ) | 
						
							| 15 |  | oteq3 | ⊢ ( 𝑇  =  ( 0g ‘ 𝑈 )  →  〈 𝐸 ,  ( 𝐽 ‘ 𝐸 ) ,  𝑇 〉  =  〈 𝐸 ,  ( 𝐽 ‘ 𝐸 ) ,  ( 0g ‘ 𝑈 ) 〉 ) | 
						
							| 16 | 15 | fveq2d | ⊢ ( 𝑇  =  ( 0g ‘ 𝑈 )  →  ( 𝐼 ‘ 〈 𝐸 ,  ( 𝐽 ‘ 𝐸 ) ,  𝑇 〉 )  =  ( 𝐼 ‘ 〈 𝐸 ,  ( 𝐽 ‘ 𝐸 ) ,  ( 0g ‘ 𝑈 ) 〉 ) ) | 
						
							| 17 | 14 16 | eqeq12d | ⊢ ( 𝑇  =  ( 0g ‘ 𝑈 )  →  ( ( 𝑆 ‘ 𝑇 )  =  ( 𝐼 ‘ 〈 𝐸 ,  ( 𝐽 ‘ 𝐸 ) ,  𝑇 〉 )  ↔  ( 𝑆 ‘ ( 0g ‘ 𝑈 ) )  =  ( 𝐼 ‘ 〈 𝐸 ,  ( 𝐽 ‘ 𝐸 ) ,  ( 0g ‘ 𝑈 ) 〉 ) ) ) | 
						
							| 18 |  | eqid | ⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 ) | 
						
							| 19 |  | eqid | ⊢ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )  =  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 20 |  | eqid | ⊢ ( 0g ‘ 𝑈 )  =  ( 0g ‘ 𝑈 ) | 
						
							| 21 | 1 18 19 3 4 20 2 11 | dvheveccl | ⊢ ( 𝜑  →  𝐸  ∈  ( 𝑉  ∖  { ( 0g ‘ 𝑈 ) } ) ) | 
						
							| 22 | 21 | eldifad | ⊢ ( 𝜑  →  𝐸  ∈  𝑉 ) | 
						
							| 23 | 1 3 4 5 11 22 13 | dvh3dim | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  𝑉 ¬  𝑥  ∈  ( 𝑁 ‘ { 𝐸 ,  𝑇 } ) ) | 
						
							| 24 | 23 | adantr | ⊢ ( ( 𝜑  ∧  𝑇  ≠  ( 0g ‘ 𝑈 ) )  →  ∃ 𝑥  ∈  𝑉 ¬  𝑥  ∈  ( 𝑁 ‘ { 𝐸 ,  𝑇 } ) ) | 
						
							| 25 |  | simp1l | ⊢ ( ( ( 𝜑  ∧  𝑇  ≠  ( 0g ‘ 𝑈 ) )  ∧  𝑥  ∈  𝑉  ∧  ¬  𝑥  ∈  ( 𝑁 ‘ { 𝐸 ,  𝑇 } ) )  →  𝜑 ) | 
						
							| 26 | 25 11 | syl | ⊢ ( ( ( 𝜑  ∧  𝑇  ≠  ( 0g ‘ 𝑈 ) )  ∧  𝑥  ∈  𝑉  ∧  ¬  𝑥  ∈  ( 𝑁 ‘ { 𝐸 ,  𝑇 } ) )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 27 | 25 12 | syl | ⊢ ( ( ( 𝜑  ∧  𝑇  ≠  ( 0g ‘ 𝑈 ) )  ∧  𝑥  ∈  𝑉  ∧  ¬  𝑥  ∈  ( 𝑁 ‘ { 𝐸 ,  𝑇 } ) )  →  ( 𝑁 ‘ { 𝑇 } )  ≠  ( 𝑁 ‘ { 𝐸 } ) ) | 
						
							| 28 | 25 13 | syl | ⊢ ( ( ( 𝜑  ∧  𝑇  ≠  ( 0g ‘ 𝑈 ) )  ∧  𝑥  ∈  𝑉  ∧  ¬  𝑥  ∈  ( 𝑁 ‘ { 𝐸 ,  𝑇 } ) )  →  𝑇  ∈  𝑉 ) | 
						
							| 29 |  | simp1r | ⊢ ( ( ( 𝜑  ∧  𝑇  ≠  ( 0g ‘ 𝑈 ) )  ∧  𝑥  ∈  𝑉  ∧  ¬  𝑥  ∈  ( 𝑁 ‘ { 𝐸 ,  𝑇 } ) )  →  𝑇  ≠  ( 0g ‘ 𝑈 ) ) | 
						
							| 30 |  | eldifsn | ⊢ ( 𝑇  ∈  ( 𝑉  ∖  { ( 0g ‘ 𝑈 ) } )  ↔  ( 𝑇  ∈  𝑉  ∧  𝑇  ≠  ( 0g ‘ 𝑈 ) ) ) | 
						
							| 31 | 28 29 30 | sylanbrc | ⊢ ( ( ( 𝜑  ∧  𝑇  ≠  ( 0g ‘ 𝑈 ) )  ∧  𝑥  ∈  𝑉  ∧  ¬  𝑥  ∈  ( 𝑁 ‘ { 𝐸 ,  𝑇 } ) )  →  𝑇  ∈  ( 𝑉  ∖  { ( 0g ‘ 𝑈 ) } ) ) | 
						
							| 32 |  | simp2 | ⊢ ( ( ( 𝜑  ∧  𝑇  ≠  ( 0g ‘ 𝑈 ) )  ∧  𝑥  ∈  𝑉  ∧  ¬  𝑥  ∈  ( 𝑁 ‘ { 𝐸 ,  𝑇 } ) )  →  𝑥  ∈  𝑉 ) | 
						
							| 33 |  | simp3 | ⊢ ( ( ( 𝜑  ∧  𝑇  ≠  ( 0g ‘ 𝑈 ) )  ∧  𝑥  ∈  𝑉  ∧  ¬  𝑥  ∈  ( 𝑁 ‘ { 𝐸 ,  𝑇 } ) )  →  ¬  𝑥  ∈  ( 𝑁 ‘ { 𝐸 ,  𝑇 } ) ) | 
						
							| 34 | 1 2 3 4 5 6 7 8 9 10 26 27 31 32 33 | hdmapval3lemN | ⊢ ( ( ( 𝜑  ∧  𝑇  ≠  ( 0g ‘ 𝑈 ) )  ∧  𝑥  ∈  𝑉  ∧  ¬  𝑥  ∈  ( 𝑁 ‘ { 𝐸 ,  𝑇 } ) )  →  ( 𝑆 ‘ 𝑇 )  =  ( 𝐼 ‘ 〈 𝐸 ,  ( 𝐽 ‘ 𝐸 ) ,  𝑇 〉 ) ) | 
						
							| 35 | 34 | rexlimdv3a | ⊢ ( ( 𝜑  ∧  𝑇  ≠  ( 0g ‘ 𝑈 ) )  →  ( ∃ 𝑥  ∈  𝑉 ¬  𝑥  ∈  ( 𝑁 ‘ { 𝐸 ,  𝑇 } )  →  ( 𝑆 ‘ 𝑇 )  =  ( 𝐼 ‘ 〈 𝐸 ,  ( 𝐽 ‘ 𝐸 ) ,  𝑇 〉 ) ) ) | 
						
							| 36 | 24 35 | mpd | ⊢ ( ( 𝜑  ∧  𝑇  ≠  ( 0g ‘ 𝑈 ) )  →  ( 𝑆 ‘ 𝑇 )  =  ( 𝐼 ‘ 〈 𝐸 ,  ( 𝐽 ‘ 𝐸 ) ,  𝑇 〉 ) ) | 
						
							| 37 |  | eqid | ⊢ ( 0g ‘ 𝐶 )  =  ( 0g ‘ 𝐶 ) | 
						
							| 38 | 1 3 20 6 37 10 11 | hdmapval0 | ⊢ ( 𝜑  →  ( 𝑆 ‘ ( 0g ‘ 𝑈 ) )  =  ( 0g ‘ 𝐶 ) ) | 
						
							| 39 | 1 3 4 20 6 7 37 8 11 21 | hvmapcl2 | ⊢ ( 𝜑  →  ( 𝐽 ‘ 𝐸 )  ∈  ( 𝐷  ∖  { ( 0g ‘ 𝐶 ) } ) ) | 
						
							| 40 | 39 | eldifad | ⊢ ( 𝜑  →  ( 𝐽 ‘ 𝐸 )  ∈  𝐷 ) | 
						
							| 41 | 1 3 4 20 6 7 37 9 11 40 22 | hdmap1val0 | ⊢ ( 𝜑  →  ( 𝐼 ‘ 〈 𝐸 ,  ( 𝐽 ‘ 𝐸 ) ,  ( 0g ‘ 𝑈 ) 〉 )  =  ( 0g ‘ 𝐶 ) ) | 
						
							| 42 | 38 41 | eqtr4d | ⊢ ( 𝜑  →  ( 𝑆 ‘ ( 0g ‘ 𝑈 ) )  =  ( 𝐼 ‘ 〈 𝐸 ,  ( 𝐽 ‘ 𝐸 ) ,  ( 0g ‘ 𝑈 ) 〉 ) ) | 
						
							| 43 | 17 36 42 | pm2.61ne | ⊢ ( 𝜑  →  ( 𝑆 ‘ 𝑇 )  =  ( 𝐼 ‘ 〈 𝐸 ,  ( 𝐽 ‘ 𝐸 ) ,  𝑇 〉 ) ) |