Step |
Hyp |
Ref |
Expression |
1 |
|
hdmapval3.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
hdmapval3.e |
⊢ 𝐸 = 〈 ( I ↾ ( Base ‘ 𝐾 ) ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 |
3 |
|
hdmapval3.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
hdmapval3.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
5 |
|
hdmapval3.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
6 |
|
hdmapval3.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
7 |
|
hdmapval3.d |
⊢ 𝐷 = ( Base ‘ 𝐶 ) |
8 |
|
hdmapval3.j |
⊢ 𝐽 = ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) |
9 |
|
hdmapval3.i |
⊢ 𝐼 = ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 ) |
10 |
|
hdmapval3.s |
⊢ 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) |
11 |
|
hdmapval3.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
12 |
|
hdmapval3.te |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑇 } ) ≠ ( 𝑁 ‘ { 𝐸 } ) ) |
13 |
|
hdmapval3.t |
⊢ ( 𝜑 → 𝑇 ∈ 𝑉 ) |
14 |
|
fveq2 |
⊢ ( 𝑇 = ( 0g ‘ 𝑈 ) → ( 𝑆 ‘ 𝑇 ) = ( 𝑆 ‘ ( 0g ‘ 𝑈 ) ) ) |
15 |
|
oteq3 |
⊢ ( 𝑇 = ( 0g ‘ 𝑈 ) → 〈 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑇 〉 = 〈 𝐸 , ( 𝐽 ‘ 𝐸 ) , ( 0g ‘ 𝑈 ) 〉 ) |
16 |
15
|
fveq2d |
⊢ ( 𝑇 = ( 0g ‘ 𝑈 ) → ( 𝐼 ‘ 〈 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑇 〉 ) = ( 𝐼 ‘ 〈 𝐸 , ( 𝐽 ‘ 𝐸 ) , ( 0g ‘ 𝑈 ) 〉 ) ) |
17 |
14 16
|
eqeq12d |
⊢ ( 𝑇 = ( 0g ‘ 𝑈 ) → ( ( 𝑆 ‘ 𝑇 ) = ( 𝐼 ‘ 〈 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑇 〉 ) ↔ ( 𝑆 ‘ ( 0g ‘ 𝑈 ) ) = ( 𝐼 ‘ 〈 𝐸 , ( 𝐽 ‘ 𝐸 ) , ( 0g ‘ 𝑈 ) 〉 ) ) ) |
18 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
19 |
|
eqid |
⊢ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
20 |
|
eqid |
⊢ ( 0g ‘ 𝑈 ) = ( 0g ‘ 𝑈 ) |
21 |
1 18 19 3 4 20 2 11
|
dvheveccl |
⊢ ( 𝜑 → 𝐸 ∈ ( 𝑉 ∖ { ( 0g ‘ 𝑈 ) } ) ) |
22 |
21
|
eldifad |
⊢ ( 𝜑 → 𝐸 ∈ 𝑉 ) |
23 |
1 3 4 5 11 22 13
|
dvh3dim |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝑉 ¬ 𝑥 ∈ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ) |
24 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑇 ≠ ( 0g ‘ 𝑈 ) ) → ∃ 𝑥 ∈ 𝑉 ¬ 𝑥 ∈ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ) |
25 |
|
simp1l |
⊢ ( ( ( 𝜑 ∧ 𝑇 ≠ ( 0g ‘ 𝑈 ) ) ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ) → 𝜑 ) |
26 |
25 11
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑇 ≠ ( 0g ‘ 𝑈 ) ) ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
27 |
25 12
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑇 ≠ ( 0g ‘ 𝑈 ) ) ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ) → ( 𝑁 ‘ { 𝑇 } ) ≠ ( 𝑁 ‘ { 𝐸 } ) ) |
28 |
25 13
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑇 ≠ ( 0g ‘ 𝑈 ) ) ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ) → 𝑇 ∈ 𝑉 ) |
29 |
|
simp1r |
⊢ ( ( ( 𝜑 ∧ 𝑇 ≠ ( 0g ‘ 𝑈 ) ) ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ) → 𝑇 ≠ ( 0g ‘ 𝑈 ) ) |
30 |
|
eldifsn |
⊢ ( 𝑇 ∈ ( 𝑉 ∖ { ( 0g ‘ 𝑈 ) } ) ↔ ( 𝑇 ∈ 𝑉 ∧ 𝑇 ≠ ( 0g ‘ 𝑈 ) ) ) |
31 |
28 29 30
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ 𝑇 ≠ ( 0g ‘ 𝑈 ) ) ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ) → 𝑇 ∈ ( 𝑉 ∖ { ( 0g ‘ 𝑈 ) } ) ) |
32 |
|
simp2 |
⊢ ( ( ( 𝜑 ∧ 𝑇 ≠ ( 0g ‘ 𝑈 ) ) ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ) → 𝑥 ∈ 𝑉 ) |
33 |
|
simp3 |
⊢ ( ( ( 𝜑 ∧ 𝑇 ≠ ( 0g ‘ 𝑈 ) ) ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ) → ¬ 𝑥 ∈ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ) |
34 |
1 2 3 4 5 6 7 8 9 10 26 27 31 32 33
|
hdmapval3lemN |
⊢ ( ( ( 𝜑 ∧ 𝑇 ≠ ( 0g ‘ 𝑈 ) ) ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ) → ( 𝑆 ‘ 𝑇 ) = ( 𝐼 ‘ 〈 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑇 〉 ) ) |
35 |
34
|
rexlimdv3a |
⊢ ( ( 𝜑 ∧ 𝑇 ≠ ( 0g ‘ 𝑈 ) ) → ( ∃ 𝑥 ∈ 𝑉 ¬ 𝑥 ∈ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) → ( 𝑆 ‘ 𝑇 ) = ( 𝐼 ‘ 〈 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑇 〉 ) ) ) |
36 |
24 35
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑇 ≠ ( 0g ‘ 𝑈 ) ) → ( 𝑆 ‘ 𝑇 ) = ( 𝐼 ‘ 〈 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑇 〉 ) ) |
37 |
|
eqid |
⊢ ( 0g ‘ 𝐶 ) = ( 0g ‘ 𝐶 ) |
38 |
1 3 20 6 37 10 11
|
hdmapval0 |
⊢ ( 𝜑 → ( 𝑆 ‘ ( 0g ‘ 𝑈 ) ) = ( 0g ‘ 𝐶 ) ) |
39 |
1 3 4 20 6 7 37 8 11 21
|
hvmapcl2 |
⊢ ( 𝜑 → ( 𝐽 ‘ 𝐸 ) ∈ ( 𝐷 ∖ { ( 0g ‘ 𝐶 ) } ) ) |
40 |
39
|
eldifad |
⊢ ( 𝜑 → ( 𝐽 ‘ 𝐸 ) ∈ 𝐷 ) |
41 |
1 3 4 20 6 7 37 9 11 40 22
|
hdmap1val0 |
⊢ ( 𝜑 → ( 𝐼 ‘ 〈 𝐸 , ( 𝐽 ‘ 𝐸 ) , ( 0g ‘ 𝑈 ) 〉 ) = ( 0g ‘ 𝐶 ) ) |
42 |
38 41
|
eqtr4d |
⊢ ( 𝜑 → ( 𝑆 ‘ ( 0g ‘ 𝑈 ) ) = ( 𝐼 ‘ 〈 𝐸 , ( 𝐽 ‘ 𝐸 ) , ( 0g ‘ 𝑈 ) 〉 ) ) |
43 |
17 36 42
|
pm2.61ne |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝑇 ) = ( 𝐼 ‘ 〈 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑇 〉 ) ) |