Step |
Hyp |
Ref |
Expression |
1 |
|
hdmap10.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
hdmap10.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
hdmap10.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
4 |
|
hdmap10.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
5 |
|
hdmap10.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
|
hdmap10.l |
⊢ 𝐿 = ( LSpan ‘ 𝐶 ) |
7 |
|
hdmap10.m |
⊢ 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
hdmap10.s |
⊢ 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) |
9 |
|
hdmap10.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
10 |
|
hdmap10.e |
⊢ 𝐸 = 〈 ( I ↾ ( Base ‘ 𝐾 ) ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 |
11 |
|
hdmap10.o |
⊢ 0 = ( 0g ‘ 𝑈 ) |
12 |
|
hdmap10.d |
⊢ 𝐷 = ( Base ‘ 𝐶 ) |
13 |
|
hdmap10.j |
⊢ 𝐽 = ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) |
14 |
|
hdmap10.i |
⊢ 𝐼 = ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 ) |
15 |
|
hdmap10lem.t |
⊢ ( 𝜑 → 𝑇 ∈ ( 𝑉 ∖ { 0 } ) ) |
16 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
17 |
|
eqid |
⊢ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
18 |
1 16 17 2 3 11 10 9
|
dvheveccl |
⊢ ( 𝜑 → 𝐸 ∈ ( 𝑉 ∖ { 0 } ) ) |
19 |
18
|
eldifad |
⊢ ( 𝜑 → 𝐸 ∈ 𝑉 ) |
20 |
15
|
eldifad |
⊢ ( 𝜑 → 𝑇 ∈ 𝑉 ) |
21 |
1 2 3 4 9 19 20
|
dvh3dim |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝑉 ¬ 𝑥 ∈ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ) |
22 |
9
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
23 |
20
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ) → 𝑇 ∈ 𝑉 ) |
24 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ) → 𝑥 ∈ 𝑉 ) |
25 |
|
eqid |
⊢ ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 ) |
26 |
1 2 9
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
27 |
3 25 4 26 19 20
|
lspprcl |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
28 |
3 4 26 19 20
|
lspprid1 |
⊢ ( 𝜑 → 𝐸 ∈ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ) |
29 |
25 4 26 27 28
|
lspsnel5a |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝐸 } ) ⊆ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ) |
30 |
3 4 26 19 20
|
lspprid2 |
⊢ ( 𝜑 → 𝑇 ∈ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ) |
31 |
25 4 26 27 30
|
lspsnel5a |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑇 } ) ⊆ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ) |
32 |
29 31
|
unssd |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝐸 } ) ∪ ( 𝑁 ‘ { 𝑇 } ) ) ⊆ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ) |
33 |
32
|
sseld |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ( 𝑁 ‘ { 𝐸 } ) ∪ ( 𝑁 ‘ { 𝑇 } ) ) → 𝑥 ∈ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ) ) |
34 |
33
|
con3dimp |
⊢ ( ( 𝜑 ∧ ¬ 𝑥 ∈ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ) → ¬ 𝑥 ∈ ( ( 𝑁 ‘ { 𝐸 } ) ∪ ( 𝑁 ‘ { 𝑇 } ) ) ) |
35 |
34
|
3adant2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ) → ¬ 𝑥 ∈ ( ( 𝑁 ‘ { 𝐸 } ) ∪ ( 𝑁 ‘ { 𝑇 } ) ) ) |
36 |
1 10 2 3 4 5 12 13 14 8 22 23 24 35
|
hdmapval2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ) → ( 𝑆 ‘ 𝑇 ) = ( 𝐼 ‘ 〈 𝑥 , ( 𝐼 ‘ 〈 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑥 〉 ) , 𝑇 〉 ) ) |
37 |
36
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ) → ( 𝐼 ‘ 〈 𝑥 , ( 𝐼 ‘ 〈 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑥 〉 ) , 𝑇 〉 ) = ( 𝑆 ‘ 𝑇 ) ) |
38 |
|
eqid |
⊢ ( -g ‘ 𝑈 ) = ( -g ‘ 𝑈 ) |
39 |
|
eqid |
⊢ ( -g ‘ 𝐶 ) = ( -g ‘ 𝐶 ) |
40 |
26
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ) → 𝑈 ∈ LMod ) |
41 |
27
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ) → ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
42 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ) → ¬ 𝑥 ∈ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ) |
43 |
11 25 40 41 24 42
|
lssneln0 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ) → 𝑥 ∈ ( 𝑉 ∖ { 0 } ) ) |
44 |
|
eqid |
⊢ ( 0g ‘ 𝐶 ) = ( 0g ‘ 𝐶 ) |
45 |
1 2 3 11 5 12 44 13 9 18
|
hvmapcl2 |
⊢ ( 𝜑 → ( 𝐽 ‘ 𝐸 ) ∈ ( 𝐷 ∖ { ( 0g ‘ 𝐶 ) } ) ) |
46 |
45
|
eldifad |
⊢ ( 𝜑 → ( 𝐽 ‘ 𝐸 ) ∈ 𝐷 ) |
47 |
46
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ) → ( 𝐽 ‘ 𝐸 ) ∈ 𝐷 ) |
48 |
1 2 3 11 4 5 6 7 13 9 18
|
mapdhvmap |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝐸 } ) ) = ( 𝐿 ‘ { ( 𝐽 ‘ 𝐸 ) } ) ) |
49 |
48
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ) → ( 𝑀 ‘ ( 𝑁 ‘ { 𝐸 } ) ) = ( 𝐿 ‘ { ( 𝐽 ‘ 𝐸 ) } ) ) |
50 |
1 2 9
|
dvhlvec |
⊢ ( 𝜑 → 𝑈 ∈ LVec ) |
51 |
50
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ) → 𝑈 ∈ LVec ) |
52 |
19
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ) → 𝐸 ∈ 𝑉 ) |
53 |
3 4 51 24 52 23 42
|
lspindpi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ) → ( ( 𝑁 ‘ { 𝑥 } ) ≠ ( 𝑁 ‘ { 𝐸 } ) ∧ ( 𝑁 ‘ { 𝑥 } ) ≠ ( 𝑁 ‘ { 𝑇 } ) ) ) |
54 |
53
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ) → ( 𝑁 ‘ { 𝑥 } ) ≠ ( 𝑁 ‘ { 𝐸 } ) ) |
55 |
54
|
necomd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ) → ( 𝑁 ‘ { 𝐸 } ) ≠ ( 𝑁 ‘ { 𝑥 } ) ) |
56 |
18
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ) → 𝐸 ∈ ( 𝑉 ∖ { 0 } ) ) |
57 |
1 2 3 11 4 5 12 6 7 14 22 47 49 55 56 24
|
hdmap1cl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ) → ( 𝐼 ‘ 〈 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑥 〉 ) ∈ 𝐷 ) |
58 |
15
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ) → 𝑇 ∈ ( 𝑉 ∖ { 0 } ) ) |
59 |
1 2 3 5 12 8 9 20
|
hdmapcl |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝑇 ) ∈ 𝐷 ) |
60 |
59
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ) → ( 𝑆 ‘ 𝑇 ) ∈ 𝐷 ) |
61 |
53
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ) → ( 𝑁 ‘ { 𝑥 } ) ≠ ( 𝑁 ‘ { 𝑇 } ) ) |
62 |
|
eqid |
⊢ ( 𝐼 ‘ 〈 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑥 〉 ) = ( 𝐼 ‘ 〈 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑥 〉 ) |
63 |
1 2 3 38 11 4 5 12 39 6 7 14 22 56 47 43 57 55 49
|
hdmap1eq |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ) → ( ( 𝐼 ‘ 〈 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑥 〉 ) = ( 𝐼 ‘ 〈 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑥 〉 ) ↔ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑥 } ) ) = ( 𝐿 ‘ { ( 𝐼 ‘ 〈 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑥 〉 ) } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝐸 ( -g ‘ 𝑈 ) 𝑥 ) } ) ) = ( 𝐿 ‘ { ( ( 𝐽 ‘ 𝐸 ) ( -g ‘ 𝐶 ) ( 𝐼 ‘ 〈 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑥 〉 ) ) } ) ) ) ) |
64 |
62 63
|
mpbii |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ) → ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑥 } ) ) = ( 𝐿 ‘ { ( 𝐼 ‘ 〈 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑥 〉 ) } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝐸 ( -g ‘ 𝑈 ) 𝑥 ) } ) ) = ( 𝐿 ‘ { ( ( 𝐽 ‘ 𝐸 ) ( -g ‘ 𝐶 ) ( 𝐼 ‘ 〈 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑥 〉 ) ) } ) ) ) |
65 |
64
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ) → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑥 } ) ) = ( 𝐿 ‘ { ( 𝐼 ‘ 〈 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑥 〉 ) } ) ) |
66 |
1 2 3 38 11 4 5 12 39 6 7 14 22 43 57 58 60 61 65
|
hdmap1eq |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ) → ( ( 𝐼 ‘ 〈 𝑥 , ( 𝐼 ‘ 〈 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑥 〉 ) , 𝑇 〉 ) = ( 𝑆 ‘ 𝑇 ) ↔ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑇 } ) ) = ( 𝐿 ‘ { ( 𝑆 ‘ 𝑇 ) } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑥 ( -g ‘ 𝑈 ) 𝑇 ) } ) ) = ( 𝐿 ‘ { ( ( 𝐼 ‘ 〈 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑥 〉 ) ( -g ‘ 𝐶 ) ( 𝑆 ‘ 𝑇 ) ) } ) ) ) ) |
67 |
37 66
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ) → ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑇 } ) ) = ( 𝐿 ‘ { ( 𝑆 ‘ 𝑇 ) } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑥 ( -g ‘ 𝑈 ) 𝑇 ) } ) ) = ( 𝐿 ‘ { ( ( 𝐼 ‘ 〈 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑥 〉 ) ( -g ‘ 𝐶 ) ( 𝑆 ‘ 𝑇 ) ) } ) ) ) |
68 |
67
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ) → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑇 } ) ) = ( 𝐿 ‘ { ( 𝑆 ‘ 𝑇 ) } ) ) |
69 |
68
|
rexlimdv3a |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝑉 ¬ 𝑥 ∈ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑇 } ) ) = ( 𝐿 ‘ { ( 𝑆 ‘ 𝑇 ) } ) ) ) |
70 |
21 69
|
mpd |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑇 } ) ) = ( 𝐿 ‘ { ( 𝑆 ‘ 𝑇 ) } ) ) |