| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hdmap10.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
hdmap10.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
hdmap10.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
| 4 |
|
hdmap10.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
| 5 |
|
hdmap10.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
| 6 |
|
hdmap10.l |
⊢ 𝐿 = ( LSpan ‘ 𝐶 ) |
| 7 |
|
hdmap10.m |
⊢ 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) |
| 8 |
|
hdmap10.s |
⊢ 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) |
| 9 |
|
hdmap10.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 10 |
|
hdmap10.e |
⊢ 𝐸 = 〈 ( I ↾ ( Base ‘ 𝐾 ) ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 |
| 11 |
|
hdmap10.o |
⊢ 0 = ( 0g ‘ 𝑈 ) |
| 12 |
|
hdmap10.d |
⊢ 𝐷 = ( Base ‘ 𝐶 ) |
| 13 |
|
hdmap10.j |
⊢ 𝐽 = ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) |
| 14 |
|
hdmap10.i |
⊢ 𝐼 = ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 ) |
| 15 |
|
hdmap10lem.t |
⊢ ( 𝜑 → 𝑇 ∈ ( 𝑉 ∖ { 0 } ) ) |
| 16 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
| 17 |
|
eqid |
⊢ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
| 18 |
1 16 17 2 3 11 10 9
|
dvheveccl |
⊢ ( 𝜑 → 𝐸 ∈ ( 𝑉 ∖ { 0 } ) ) |
| 19 |
18
|
eldifad |
⊢ ( 𝜑 → 𝐸 ∈ 𝑉 ) |
| 20 |
15
|
eldifad |
⊢ ( 𝜑 → 𝑇 ∈ 𝑉 ) |
| 21 |
1 2 3 4 9 19 20
|
dvh3dim |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝑉 ¬ 𝑥 ∈ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ) |
| 22 |
9
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 23 |
20
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ) → 𝑇 ∈ 𝑉 ) |
| 24 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ) → 𝑥 ∈ 𝑉 ) |
| 25 |
|
eqid |
⊢ ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 ) |
| 26 |
1 2 9
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
| 27 |
3 25 4 26 19 20
|
lspprcl |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 28 |
3 4 26 19 20
|
lspprid1 |
⊢ ( 𝜑 → 𝐸 ∈ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ) |
| 29 |
25 4 26 27 28
|
ellspsn5 |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝐸 } ) ⊆ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ) |
| 30 |
3 4 26 19 20
|
lspprid2 |
⊢ ( 𝜑 → 𝑇 ∈ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ) |
| 31 |
25 4 26 27 30
|
ellspsn5 |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑇 } ) ⊆ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ) |
| 32 |
29 31
|
unssd |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝐸 } ) ∪ ( 𝑁 ‘ { 𝑇 } ) ) ⊆ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ) |
| 33 |
32
|
sseld |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ( 𝑁 ‘ { 𝐸 } ) ∪ ( 𝑁 ‘ { 𝑇 } ) ) → 𝑥 ∈ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ) ) |
| 34 |
33
|
con3dimp |
⊢ ( ( 𝜑 ∧ ¬ 𝑥 ∈ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ) → ¬ 𝑥 ∈ ( ( 𝑁 ‘ { 𝐸 } ) ∪ ( 𝑁 ‘ { 𝑇 } ) ) ) |
| 35 |
34
|
3adant2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ) → ¬ 𝑥 ∈ ( ( 𝑁 ‘ { 𝐸 } ) ∪ ( 𝑁 ‘ { 𝑇 } ) ) ) |
| 36 |
1 10 2 3 4 5 12 13 14 8 22 23 24 35
|
hdmapval2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ) → ( 𝑆 ‘ 𝑇 ) = ( 𝐼 ‘ 〈 𝑥 , ( 𝐼 ‘ 〈 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑥 〉 ) , 𝑇 〉 ) ) |
| 37 |
36
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ) → ( 𝐼 ‘ 〈 𝑥 , ( 𝐼 ‘ 〈 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑥 〉 ) , 𝑇 〉 ) = ( 𝑆 ‘ 𝑇 ) ) |
| 38 |
|
eqid |
⊢ ( -g ‘ 𝑈 ) = ( -g ‘ 𝑈 ) |
| 39 |
|
eqid |
⊢ ( -g ‘ 𝐶 ) = ( -g ‘ 𝐶 ) |
| 40 |
26
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ) → 𝑈 ∈ LMod ) |
| 41 |
27
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ) → ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 42 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ) → ¬ 𝑥 ∈ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ) |
| 43 |
11 25 40 41 24 42
|
lssneln0 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ) → 𝑥 ∈ ( 𝑉 ∖ { 0 } ) ) |
| 44 |
|
eqid |
⊢ ( 0g ‘ 𝐶 ) = ( 0g ‘ 𝐶 ) |
| 45 |
1 2 3 11 5 12 44 13 9 18
|
hvmapcl2 |
⊢ ( 𝜑 → ( 𝐽 ‘ 𝐸 ) ∈ ( 𝐷 ∖ { ( 0g ‘ 𝐶 ) } ) ) |
| 46 |
45
|
eldifad |
⊢ ( 𝜑 → ( 𝐽 ‘ 𝐸 ) ∈ 𝐷 ) |
| 47 |
46
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ) → ( 𝐽 ‘ 𝐸 ) ∈ 𝐷 ) |
| 48 |
1 2 3 11 4 5 6 7 13 9 18
|
mapdhvmap |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝐸 } ) ) = ( 𝐿 ‘ { ( 𝐽 ‘ 𝐸 ) } ) ) |
| 49 |
48
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ) → ( 𝑀 ‘ ( 𝑁 ‘ { 𝐸 } ) ) = ( 𝐿 ‘ { ( 𝐽 ‘ 𝐸 ) } ) ) |
| 50 |
1 2 9
|
dvhlvec |
⊢ ( 𝜑 → 𝑈 ∈ LVec ) |
| 51 |
50
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ) → 𝑈 ∈ LVec ) |
| 52 |
19
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ) → 𝐸 ∈ 𝑉 ) |
| 53 |
3 4 51 24 52 23 42
|
lspindpi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ) → ( ( 𝑁 ‘ { 𝑥 } ) ≠ ( 𝑁 ‘ { 𝐸 } ) ∧ ( 𝑁 ‘ { 𝑥 } ) ≠ ( 𝑁 ‘ { 𝑇 } ) ) ) |
| 54 |
53
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ) → ( 𝑁 ‘ { 𝑥 } ) ≠ ( 𝑁 ‘ { 𝐸 } ) ) |
| 55 |
54
|
necomd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ) → ( 𝑁 ‘ { 𝐸 } ) ≠ ( 𝑁 ‘ { 𝑥 } ) ) |
| 56 |
18
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ) → 𝐸 ∈ ( 𝑉 ∖ { 0 } ) ) |
| 57 |
1 2 3 11 4 5 12 6 7 14 22 47 49 55 56 24
|
hdmap1cl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ) → ( 𝐼 ‘ 〈 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑥 〉 ) ∈ 𝐷 ) |
| 58 |
15
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ) → 𝑇 ∈ ( 𝑉 ∖ { 0 } ) ) |
| 59 |
1 2 3 5 12 8 9 20
|
hdmapcl |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝑇 ) ∈ 𝐷 ) |
| 60 |
59
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ) → ( 𝑆 ‘ 𝑇 ) ∈ 𝐷 ) |
| 61 |
53
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ) → ( 𝑁 ‘ { 𝑥 } ) ≠ ( 𝑁 ‘ { 𝑇 } ) ) |
| 62 |
|
eqid |
⊢ ( 𝐼 ‘ 〈 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑥 〉 ) = ( 𝐼 ‘ 〈 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑥 〉 ) |
| 63 |
1 2 3 38 11 4 5 12 39 6 7 14 22 56 47 43 57 55 49
|
hdmap1eq |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ) → ( ( 𝐼 ‘ 〈 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑥 〉 ) = ( 𝐼 ‘ 〈 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑥 〉 ) ↔ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑥 } ) ) = ( 𝐿 ‘ { ( 𝐼 ‘ 〈 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑥 〉 ) } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝐸 ( -g ‘ 𝑈 ) 𝑥 ) } ) ) = ( 𝐿 ‘ { ( ( 𝐽 ‘ 𝐸 ) ( -g ‘ 𝐶 ) ( 𝐼 ‘ 〈 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑥 〉 ) ) } ) ) ) ) |
| 64 |
62 63
|
mpbii |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ) → ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑥 } ) ) = ( 𝐿 ‘ { ( 𝐼 ‘ 〈 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑥 〉 ) } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝐸 ( -g ‘ 𝑈 ) 𝑥 ) } ) ) = ( 𝐿 ‘ { ( ( 𝐽 ‘ 𝐸 ) ( -g ‘ 𝐶 ) ( 𝐼 ‘ 〈 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑥 〉 ) ) } ) ) ) |
| 65 |
64
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ) → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑥 } ) ) = ( 𝐿 ‘ { ( 𝐼 ‘ 〈 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑥 〉 ) } ) ) |
| 66 |
1 2 3 38 11 4 5 12 39 6 7 14 22 43 57 58 60 61 65
|
hdmap1eq |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ) → ( ( 𝐼 ‘ 〈 𝑥 , ( 𝐼 ‘ 〈 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑥 〉 ) , 𝑇 〉 ) = ( 𝑆 ‘ 𝑇 ) ↔ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑇 } ) ) = ( 𝐿 ‘ { ( 𝑆 ‘ 𝑇 ) } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑥 ( -g ‘ 𝑈 ) 𝑇 ) } ) ) = ( 𝐿 ‘ { ( ( 𝐼 ‘ 〈 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑥 〉 ) ( -g ‘ 𝐶 ) ( 𝑆 ‘ 𝑇 ) ) } ) ) ) ) |
| 67 |
37 66
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ) → ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑇 } ) ) = ( 𝐿 ‘ { ( 𝑆 ‘ 𝑇 ) } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑥 ( -g ‘ 𝑈 ) 𝑇 ) } ) ) = ( 𝐿 ‘ { ( ( 𝐼 ‘ 〈 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑥 〉 ) ( -g ‘ 𝐶 ) ( 𝑆 ‘ 𝑇 ) ) } ) ) ) |
| 68 |
67
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) ) → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑇 } ) ) = ( 𝐿 ‘ { ( 𝑆 ‘ 𝑇 ) } ) ) |
| 69 |
68
|
rexlimdv3a |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝑉 ¬ 𝑥 ∈ ( 𝑁 ‘ { 𝐸 , 𝑇 } ) → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑇 } ) ) = ( 𝐿 ‘ { ( 𝑆 ‘ 𝑇 ) } ) ) ) |
| 70 |
21 69
|
mpd |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑇 } ) ) = ( 𝐿 ‘ { ( 𝑆 ‘ 𝑇 ) } ) ) |