Step |
Hyp |
Ref |
Expression |
1 |
|
hdmap10.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
hdmap10.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
hdmap10.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
4 |
|
hdmap10.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
5 |
|
hdmap10.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
|
hdmap10.l |
⊢ 𝐿 = ( LSpan ‘ 𝐶 ) |
7 |
|
hdmap10.m |
⊢ 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
hdmap10.s |
⊢ 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) |
9 |
|
hdmap10.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
10 |
|
hdmap10.t |
⊢ ( 𝜑 → 𝑇 ∈ 𝑉 ) |
11 |
|
sneq |
⊢ ( 𝑇 = ( 0g ‘ 𝑈 ) → { 𝑇 } = { ( 0g ‘ 𝑈 ) } ) |
12 |
11
|
fveq2d |
⊢ ( 𝑇 = ( 0g ‘ 𝑈 ) → ( 𝑁 ‘ { 𝑇 } ) = ( 𝑁 ‘ { ( 0g ‘ 𝑈 ) } ) ) |
13 |
12
|
fveq2d |
⊢ ( 𝑇 = ( 0g ‘ 𝑈 ) → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑇 } ) ) = ( 𝑀 ‘ ( 𝑁 ‘ { ( 0g ‘ 𝑈 ) } ) ) ) |
14 |
|
fveq2 |
⊢ ( 𝑇 = ( 0g ‘ 𝑈 ) → ( 𝑆 ‘ 𝑇 ) = ( 𝑆 ‘ ( 0g ‘ 𝑈 ) ) ) |
15 |
14
|
sneqd |
⊢ ( 𝑇 = ( 0g ‘ 𝑈 ) → { ( 𝑆 ‘ 𝑇 ) } = { ( 𝑆 ‘ ( 0g ‘ 𝑈 ) ) } ) |
16 |
15
|
fveq2d |
⊢ ( 𝑇 = ( 0g ‘ 𝑈 ) → ( 𝐿 ‘ { ( 𝑆 ‘ 𝑇 ) } ) = ( 𝐿 ‘ { ( 𝑆 ‘ ( 0g ‘ 𝑈 ) ) } ) ) |
17 |
13 16
|
eqeq12d |
⊢ ( 𝑇 = ( 0g ‘ 𝑈 ) → ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑇 } ) ) = ( 𝐿 ‘ { ( 𝑆 ‘ 𝑇 ) } ) ↔ ( 𝑀 ‘ ( 𝑁 ‘ { ( 0g ‘ 𝑈 ) } ) ) = ( 𝐿 ‘ { ( 𝑆 ‘ ( 0g ‘ 𝑈 ) ) } ) ) ) |
18 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑇 ≠ ( 0g ‘ 𝑈 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
19 |
|
eqid |
⊢ 〈 ( I ↾ ( Base ‘ 𝐾 ) ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 = 〈 ( I ↾ ( Base ‘ 𝐾 ) ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 |
20 |
|
eqid |
⊢ ( 0g ‘ 𝑈 ) = ( 0g ‘ 𝑈 ) |
21 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
22 |
|
eqid |
⊢ ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) = ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) |
23 |
|
eqid |
⊢ ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 ) = ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 ) |
24 |
10
|
anim1i |
⊢ ( ( 𝜑 ∧ 𝑇 ≠ ( 0g ‘ 𝑈 ) ) → ( 𝑇 ∈ 𝑉 ∧ 𝑇 ≠ ( 0g ‘ 𝑈 ) ) ) |
25 |
|
eldifsn |
⊢ ( 𝑇 ∈ ( 𝑉 ∖ { ( 0g ‘ 𝑈 ) } ) ↔ ( 𝑇 ∈ 𝑉 ∧ 𝑇 ≠ ( 0g ‘ 𝑈 ) ) ) |
26 |
24 25
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑇 ≠ ( 0g ‘ 𝑈 ) ) → 𝑇 ∈ ( 𝑉 ∖ { ( 0g ‘ 𝑈 ) } ) ) |
27 |
1 2 3 4 5 6 7 8 18 19 20 21 22 23 26
|
hdmap10lem |
⊢ ( ( 𝜑 ∧ 𝑇 ≠ ( 0g ‘ 𝑈 ) ) → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑇 } ) ) = ( 𝐿 ‘ { ( 𝑆 ‘ 𝑇 ) } ) ) |
28 |
1 2 9
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
29 |
20 4
|
lspsn0 |
⊢ ( 𝑈 ∈ LMod → ( 𝑁 ‘ { ( 0g ‘ 𝑈 ) } ) = { ( 0g ‘ 𝑈 ) } ) |
30 |
28 29
|
syl |
⊢ ( 𝜑 → ( 𝑁 ‘ { ( 0g ‘ 𝑈 ) } ) = { ( 0g ‘ 𝑈 ) } ) |
31 |
30
|
fveq2d |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { ( 0g ‘ 𝑈 ) } ) ) = ( 𝑀 ‘ { ( 0g ‘ 𝑈 ) } ) ) |
32 |
|
eqid |
⊢ ( 0g ‘ 𝐶 ) = ( 0g ‘ 𝐶 ) |
33 |
1 7 2 20 5 32 9
|
mapd0 |
⊢ ( 𝜑 → ( 𝑀 ‘ { ( 0g ‘ 𝑈 ) } ) = { ( 0g ‘ 𝐶 ) } ) |
34 |
1 2 20 5 32 8 9
|
hdmapval0 |
⊢ ( 𝜑 → ( 𝑆 ‘ ( 0g ‘ 𝑈 ) ) = ( 0g ‘ 𝐶 ) ) |
35 |
34
|
sneqd |
⊢ ( 𝜑 → { ( 𝑆 ‘ ( 0g ‘ 𝑈 ) ) } = { ( 0g ‘ 𝐶 ) } ) |
36 |
35
|
fveq2d |
⊢ ( 𝜑 → ( 𝐿 ‘ { ( 𝑆 ‘ ( 0g ‘ 𝑈 ) ) } ) = ( 𝐿 ‘ { ( 0g ‘ 𝐶 ) } ) ) |
37 |
1 5 9
|
lcdlmod |
⊢ ( 𝜑 → 𝐶 ∈ LMod ) |
38 |
32 6
|
lspsn0 |
⊢ ( 𝐶 ∈ LMod → ( 𝐿 ‘ { ( 0g ‘ 𝐶 ) } ) = { ( 0g ‘ 𝐶 ) } ) |
39 |
37 38
|
syl |
⊢ ( 𝜑 → ( 𝐿 ‘ { ( 0g ‘ 𝐶 ) } ) = { ( 0g ‘ 𝐶 ) } ) |
40 |
36 39
|
eqtr2d |
⊢ ( 𝜑 → { ( 0g ‘ 𝐶 ) } = ( 𝐿 ‘ { ( 𝑆 ‘ ( 0g ‘ 𝑈 ) ) } ) ) |
41 |
31 33 40
|
3eqtrd |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { ( 0g ‘ 𝑈 ) } ) ) = ( 𝐿 ‘ { ( 𝑆 ‘ ( 0g ‘ 𝑈 ) ) } ) ) |
42 |
17 27 41
|
pm2.61ne |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑇 } ) ) = ( 𝐿 ‘ { ( 𝑆 ‘ 𝑇 ) } ) ) |