Metamath Proof Explorer


Theorem hdmap10

Description: Part 10 in Baer p. 48 line 33, (Ft)* = G(tS) in their notation (S = sigma). (Contributed by NM, 17-May-2015)

Ref Expression
Hypotheses hdmap10.h 𝐻 = ( LHyp ‘ 𝐾 )
hdmap10.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
hdmap10.v 𝑉 = ( Base ‘ 𝑈 )
hdmap10.n 𝑁 = ( LSpan ‘ 𝑈 )
hdmap10.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
hdmap10.l 𝐿 = ( LSpan ‘ 𝐶 )
hdmap10.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
hdmap10.s 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 )
hdmap10.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
hdmap10.t ( 𝜑𝑇𝑉 )
Assertion hdmap10 ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑇 } ) ) = ( 𝐿 ‘ { ( 𝑆𝑇 ) } ) )

Proof

Step Hyp Ref Expression
1 hdmap10.h 𝐻 = ( LHyp ‘ 𝐾 )
2 hdmap10.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
3 hdmap10.v 𝑉 = ( Base ‘ 𝑈 )
4 hdmap10.n 𝑁 = ( LSpan ‘ 𝑈 )
5 hdmap10.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
6 hdmap10.l 𝐿 = ( LSpan ‘ 𝐶 )
7 hdmap10.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
8 hdmap10.s 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 )
9 hdmap10.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
10 hdmap10.t ( 𝜑𝑇𝑉 )
11 sneq ( 𝑇 = ( 0g𝑈 ) → { 𝑇 } = { ( 0g𝑈 ) } )
12 11 fveq2d ( 𝑇 = ( 0g𝑈 ) → ( 𝑁 ‘ { 𝑇 } ) = ( 𝑁 ‘ { ( 0g𝑈 ) } ) )
13 12 fveq2d ( 𝑇 = ( 0g𝑈 ) → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑇 } ) ) = ( 𝑀 ‘ ( 𝑁 ‘ { ( 0g𝑈 ) } ) ) )
14 fveq2 ( 𝑇 = ( 0g𝑈 ) → ( 𝑆𝑇 ) = ( 𝑆 ‘ ( 0g𝑈 ) ) )
15 14 sneqd ( 𝑇 = ( 0g𝑈 ) → { ( 𝑆𝑇 ) } = { ( 𝑆 ‘ ( 0g𝑈 ) ) } )
16 15 fveq2d ( 𝑇 = ( 0g𝑈 ) → ( 𝐿 ‘ { ( 𝑆𝑇 ) } ) = ( 𝐿 ‘ { ( 𝑆 ‘ ( 0g𝑈 ) ) } ) )
17 13 16 eqeq12d ( 𝑇 = ( 0g𝑈 ) → ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑇 } ) ) = ( 𝐿 ‘ { ( 𝑆𝑇 ) } ) ↔ ( 𝑀 ‘ ( 𝑁 ‘ { ( 0g𝑈 ) } ) ) = ( 𝐿 ‘ { ( 𝑆 ‘ ( 0g𝑈 ) ) } ) ) )
18 9 adantr ( ( 𝜑𝑇 ≠ ( 0g𝑈 ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
19 eqid ⟨ ( I ↾ ( Base ‘ 𝐾 ) ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) ⟩ = ⟨ ( I ↾ ( Base ‘ 𝐾 ) ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) ⟩
20 eqid ( 0g𝑈 ) = ( 0g𝑈 )
21 eqid ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 )
22 eqid ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) = ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 )
23 eqid ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 ) = ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 )
24 10 anim1i ( ( 𝜑𝑇 ≠ ( 0g𝑈 ) ) → ( 𝑇𝑉𝑇 ≠ ( 0g𝑈 ) ) )
25 eldifsn ( 𝑇 ∈ ( 𝑉 ∖ { ( 0g𝑈 ) } ) ↔ ( 𝑇𝑉𝑇 ≠ ( 0g𝑈 ) ) )
26 24 25 sylibr ( ( 𝜑𝑇 ≠ ( 0g𝑈 ) ) → 𝑇 ∈ ( 𝑉 ∖ { ( 0g𝑈 ) } ) )
27 1 2 3 4 5 6 7 8 18 19 20 21 22 23 26 hdmap10lem ( ( 𝜑𝑇 ≠ ( 0g𝑈 ) ) → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑇 } ) ) = ( 𝐿 ‘ { ( 𝑆𝑇 ) } ) )
28 1 2 9 dvhlmod ( 𝜑𝑈 ∈ LMod )
29 20 4 lspsn0 ( 𝑈 ∈ LMod → ( 𝑁 ‘ { ( 0g𝑈 ) } ) = { ( 0g𝑈 ) } )
30 28 29 syl ( 𝜑 → ( 𝑁 ‘ { ( 0g𝑈 ) } ) = { ( 0g𝑈 ) } )
31 30 fveq2d ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { ( 0g𝑈 ) } ) ) = ( 𝑀 ‘ { ( 0g𝑈 ) } ) )
32 eqid ( 0g𝐶 ) = ( 0g𝐶 )
33 1 7 2 20 5 32 9 mapd0 ( 𝜑 → ( 𝑀 ‘ { ( 0g𝑈 ) } ) = { ( 0g𝐶 ) } )
34 1 2 20 5 32 8 9 hdmapval0 ( 𝜑 → ( 𝑆 ‘ ( 0g𝑈 ) ) = ( 0g𝐶 ) )
35 34 sneqd ( 𝜑 → { ( 𝑆 ‘ ( 0g𝑈 ) ) } = { ( 0g𝐶 ) } )
36 35 fveq2d ( 𝜑 → ( 𝐿 ‘ { ( 𝑆 ‘ ( 0g𝑈 ) ) } ) = ( 𝐿 ‘ { ( 0g𝐶 ) } ) )
37 1 5 9 lcdlmod ( 𝜑𝐶 ∈ LMod )
38 32 6 lspsn0 ( 𝐶 ∈ LMod → ( 𝐿 ‘ { ( 0g𝐶 ) } ) = { ( 0g𝐶 ) } )
39 37 38 syl ( 𝜑 → ( 𝐿 ‘ { ( 0g𝐶 ) } ) = { ( 0g𝐶 ) } )
40 36 39 eqtr2d ( 𝜑 → { ( 0g𝐶 ) } = ( 𝐿 ‘ { ( 𝑆 ‘ ( 0g𝑈 ) ) } ) )
41 31 33 40 3eqtrd ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { ( 0g𝑈 ) } ) ) = ( 𝐿 ‘ { ( 𝑆 ‘ ( 0g𝑈 ) ) } ) )
42 17 27 41 pm2.61ne ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑇 } ) ) = ( 𝐿 ‘ { ( 𝑆𝑇 ) } ) )