Metamath Proof Explorer


Theorem hdmap11lem1

Description: Lemma for hdmapadd . (Contributed by NM, 26-May-2015)

Ref Expression
Hypotheses hdmap11.h 𝐻 = ( LHyp ‘ 𝐾 )
hdmap11.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
hdmap11.v 𝑉 = ( Base ‘ 𝑈 )
hdmap11.p + = ( +g𝑈 )
hdmap11.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
hdmap11.a = ( +g𝐶 )
hdmap11.s 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 )
hdmap11.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
hdmap11.x ( 𝜑𝑋𝑉 )
hdmap11.y ( 𝜑𝑌𝑉 )
hdmap11.e 𝐸 = ⟨ ( I ↾ ( Base ‘ 𝐾 ) ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) ⟩
hdmap11.o 0 = ( 0g𝑈 )
hdmap11.n 𝑁 = ( LSpan ‘ 𝑈 )
hdmap11.d 𝐷 = ( Base ‘ 𝐶 )
hdmap11.l 𝐿 = ( LSpan ‘ 𝐶 )
hdmap11.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
hdmap11.j 𝐽 = ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 )
hdmap11.i 𝐼 = ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 )
hdmap11lem0.1a ( 𝜑𝑧𝑉 )
hdmap11lem0.6 ( 𝜑 → ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) )
hdmap11lem0.2a ( 𝜑 → ( 𝑁 ‘ { 𝑧 } ) ≠ ( 𝑁 ‘ { 𝐸 } ) )
Assertion hdmap11lem1 ( 𝜑 → ( 𝑆 ‘ ( 𝑋 + 𝑌 ) ) = ( ( 𝑆𝑋 ) ( 𝑆𝑌 ) ) )

Proof

Step Hyp Ref Expression
1 hdmap11.h 𝐻 = ( LHyp ‘ 𝐾 )
2 hdmap11.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
3 hdmap11.v 𝑉 = ( Base ‘ 𝑈 )
4 hdmap11.p + = ( +g𝑈 )
5 hdmap11.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
6 hdmap11.a = ( +g𝐶 )
7 hdmap11.s 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 )
8 hdmap11.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
9 hdmap11.x ( 𝜑𝑋𝑉 )
10 hdmap11.y ( 𝜑𝑌𝑉 )
11 hdmap11.e 𝐸 = ⟨ ( I ↾ ( Base ‘ 𝐾 ) ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) ⟩
12 hdmap11.o 0 = ( 0g𝑈 )
13 hdmap11.n 𝑁 = ( LSpan ‘ 𝑈 )
14 hdmap11.d 𝐷 = ( Base ‘ 𝐶 )
15 hdmap11.l 𝐿 = ( LSpan ‘ 𝐶 )
16 hdmap11.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
17 hdmap11.j 𝐽 = ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 )
18 hdmap11.i 𝐼 = ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 )
19 hdmap11lem0.1a ( 𝜑𝑧𝑉 )
20 hdmap11lem0.6 ( 𝜑 → ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) )
21 hdmap11lem0.2a ( 𝜑 → ( 𝑁 ‘ { 𝑧 } ) ≠ ( 𝑁 ‘ { 𝐸 } ) )
22 eqid ( 0g𝐶 ) = ( 0g𝐶 )
23 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
24 eqid ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
25 1 23 24 2 3 12 11 8 dvheveccl ( 𝜑𝐸 ∈ ( 𝑉 ∖ { 0 } ) )
26 1 2 3 12 5 14 22 17 8 25 hvmapcl2 ( 𝜑 → ( 𝐽𝐸 ) ∈ ( 𝐷 ∖ { ( 0g𝐶 ) } ) )
27 26 eldifad ( 𝜑 → ( 𝐽𝐸 ) ∈ 𝐷 )
28 1 2 3 12 13 5 15 16 17 8 25 mapdhvmap ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝐸 } ) ) = ( 𝐿 ‘ { ( 𝐽𝐸 ) } ) )
29 21 necomd ( 𝜑 → ( 𝑁 ‘ { 𝐸 } ) ≠ ( 𝑁 ‘ { 𝑧 } ) )
30 1 2 3 12 13 5 14 15 16 18 8 27 28 29 25 19 hdmap1cl ( 𝜑 → ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽𝐸 ) , 𝑧 ⟩ ) ∈ 𝐷 )
31 eqid ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 )
32 1 2 8 dvhlmod ( 𝜑𝑈 ∈ LMod )
33 3 31 13 32 9 10 lspprcl ( 𝜑 → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∈ ( LSubSp ‘ 𝑈 ) )
34 12 31 32 33 19 20 lssneln0 ( 𝜑𝑧 ∈ ( 𝑉 ∖ { 0 } ) )
35 eqidd ( 𝜑 → ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽𝐸 ) , 𝑧 ⟩ ) = ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽𝐸 ) , 𝑧 ⟩ ) )
36 eqid ( -g𝑈 ) = ( -g𝑈 )
37 eqid ( -g𝐶 ) = ( -g𝐶 )
38 1 2 3 36 12 13 5 14 37 15 16 18 8 25 27 34 30 29 28 hdmap1eq ( 𝜑 → ( ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽𝐸 ) , 𝑧 ⟩ ) = ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽𝐸 ) , 𝑧 ⟩ ) ↔ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑧 } ) ) = ( 𝐿 ‘ { ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽𝐸 ) , 𝑧 ⟩ ) } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝐸 ( -g𝑈 ) 𝑧 ) } ) ) = ( 𝐿 ‘ { ( ( 𝐽𝐸 ) ( -g𝐶 ) ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽𝐸 ) , 𝑧 ⟩ ) ) } ) ) ) )
39 35 38 mpbid ( 𝜑 → ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑧 } ) ) = ( 𝐿 ‘ { ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽𝐸 ) , 𝑧 ⟩ ) } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝐸 ( -g𝑈 ) 𝑧 ) } ) ) = ( 𝐿 ‘ { ( ( 𝐽𝐸 ) ( -g𝐶 ) ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽𝐸 ) , 𝑧 ⟩ ) ) } ) ) )
40 39 simpld ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑧 } ) ) = ( 𝐿 ‘ { ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽𝐸 ) , 𝑧 ⟩ ) } ) )
41 1 2 3 4 12 13 5 14 6 15 16 18 8 30 34 9 10 20 40 hdmap1l6 ( 𝜑 → ( 𝐼 ‘ ⟨ 𝑧 , ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽𝐸 ) , 𝑧 ⟩ ) , ( 𝑋 + 𝑌 ) ⟩ ) = ( ( 𝐼 ‘ ⟨ 𝑧 , ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽𝐸 ) , 𝑧 ⟩ ) , 𝑋 ⟩ ) ( 𝐼 ‘ ⟨ 𝑧 , ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽𝐸 ) , 𝑧 ⟩ ) , 𝑌 ⟩ ) ) )
42 3 4 lmodvacl ( ( 𝑈 ∈ LMod ∧ 𝑋𝑉𝑌𝑉 ) → ( 𝑋 + 𝑌 ) ∈ 𝑉 )
43 32 9 10 42 syl3anc ( 𝜑 → ( 𝑋 + 𝑌 ) ∈ 𝑉 )
44 1 2 8 dvhlvec ( 𝜑𝑈 ∈ LVec )
45 25 eldifad ( 𝜑𝐸𝑉 )
46 3 4 13 32 9 10 lspprvacl ( 𝜑 → ( 𝑋 + 𝑌 ) ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) )
47 31 13 32 33 46 lspsnel5a ( 𝜑 → ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ⊆ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) )
48 47 20 ssneldd ( 𝜑 → ¬ 𝑧 ∈ ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) )
49 3 13 32 19 43 48 lspsnne2 ( 𝜑 → ( 𝑁 ‘ { 𝑧 } ) ≠ ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) )
50 3 13 12 44 45 43 34 21 49 hdmaplem4 ( 𝜑 → ¬ 𝑧 ∈ ( ( 𝑁 ‘ { 𝐸 } ) ∪ ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ) )
51 1 11 2 3 13 5 14 17 18 7 8 43 19 50 hdmapval2 ( 𝜑 → ( 𝑆 ‘ ( 𝑋 + 𝑌 ) ) = ( 𝐼 ‘ ⟨ 𝑧 , ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽𝐸 ) , 𝑧 ⟩ ) , ( 𝑋 + 𝑌 ) ⟩ ) )
52 3 13 44 19 9 10 20 lspindpi ( 𝜑 → ( ( 𝑁 ‘ { 𝑧 } ) ≠ ( 𝑁 ‘ { 𝑋 } ) ∧ ( 𝑁 ‘ { 𝑧 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) )
53 52 simpld ( 𝜑 → ( 𝑁 ‘ { 𝑧 } ) ≠ ( 𝑁 ‘ { 𝑋 } ) )
54 3 13 12 44 45 9 34 21 53 hdmaplem4 ( 𝜑 → ¬ 𝑧 ∈ ( ( 𝑁 ‘ { 𝐸 } ) ∪ ( 𝑁 ‘ { 𝑋 } ) ) )
55 1 11 2 3 13 5 14 17 18 7 8 9 19 54 hdmapval2 ( 𝜑 → ( 𝑆𝑋 ) = ( 𝐼 ‘ ⟨ 𝑧 , ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽𝐸 ) , 𝑧 ⟩ ) , 𝑋 ⟩ ) )
56 52 simprd ( 𝜑 → ( 𝑁 ‘ { 𝑧 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) )
57 3 13 12 44 45 10 34 21 56 hdmaplem4 ( 𝜑 → ¬ 𝑧 ∈ ( ( 𝑁 ‘ { 𝐸 } ) ∪ ( 𝑁 ‘ { 𝑌 } ) ) )
58 1 11 2 3 13 5 14 17 18 7 8 10 19 57 hdmapval2 ( 𝜑 → ( 𝑆𝑌 ) = ( 𝐼 ‘ ⟨ 𝑧 , ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽𝐸 ) , 𝑧 ⟩ ) , 𝑌 ⟩ ) )
59 55 58 oveq12d ( 𝜑 → ( ( 𝑆𝑋 ) ( 𝑆𝑌 ) ) = ( ( 𝐼 ‘ ⟨ 𝑧 , ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽𝐸 ) , 𝑧 ⟩ ) , 𝑋 ⟩ ) ( 𝐼 ‘ ⟨ 𝑧 , ( 𝐼 ‘ ⟨ 𝐸 , ( 𝐽𝐸 ) , 𝑧 ⟩ ) , 𝑌 ⟩ ) ) )
60 41 51 59 3eqtr4d ( 𝜑 → ( 𝑆 ‘ ( 𝑋 + 𝑌 ) ) = ( ( 𝑆𝑋 ) ( 𝑆𝑌 ) ) )