| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmap11.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | hdmap11.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | hdmap11.v | ⊢ 𝑉  =  ( Base ‘ 𝑈 ) | 
						
							| 4 |  | hdmap11.p | ⊢  +   =  ( +g ‘ 𝑈 ) | 
						
							| 5 |  | hdmap11.c | ⊢ 𝐶  =  ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 6 |  | hdmap11.a | ⊢  ✚   =  ( +g ‘ 𝐶 ) | 
						
							| 7 |  | hdmap11.s | ⊢ 𝑆  =  ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 8 |  | hdmap11.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 9 |  | hdmap11.x | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 10 |  | hdmap11.y | ⊢ ( 𝜑  →  𝑌  ∈  𝑉 ) | 
						
							| 11 |  | hdmap11.e | ⊢ 𝐸  =  〈 (  I   ↾  ( Base ‘ 𝐾 ) ) ,  (  I   ↾  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 | 
						
							| 12 |  | hdmap11.o | ⊢  0   =  ( 0g ‘ 𝑈 ) | 
						
							| 13 |  | hdmap11.n | ⊢ 𝑁  =  ( LSpan ‘ 𝑈 ) | 
						
							| 14 |  | hdmap11.d | ⊢ 𝐷  =  ( Base ‘ 𝐶 ) | 
						
							| 15 |  | hdmap11.l | ⊢ 𝐿  =  ( LSpan ‘ 𝐶 ) | 
						
							| 16 |  | hdmap11.m | ⊢ 𝑀  =  ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 17 |  | hdmap11.j | ⊢ 𝐽  =  ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 18 |  | hdmap11.i | ⊢ 𝐼  =  ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 19 |  | hdmap11lem0.1a | ⊢ ( 𝜑  →  𝑧  ∈  𝑉 ) | 
						
							| 20 |  | hdmap11lem0.6 | ⊢ ( 𝜑  →  ¬  𝑧  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) ) | 
						
							| 21 |  | hdmap11lem0.2a | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑧 } )  ≠  ( 𝑁 ‘ { 𝐸 } ) ) | 
						
							| 22 |  | eqid | ⊢ ( 0g ‘ 𝐶 )  =  ( 0g ‘ 𝐶 ) | 
						
							| 23 |  | eqid | ⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 ) | 
						
							| 24 |  | eqid | ⊢ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )  =  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 25 | 1 23 24 2 3 12 11 8 | dvheveccl | ⊢ ( 𝜑  →  𝐸  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 26 | 1 2 3 12 5 14 22 17 8 25 | hvmapcl2 | ⊢ ( 𝜑  →  ( 𝐽 ‘ 𝐸 )  ∈  ( 𝐷  ∖  { ( 0g ‘ 𝐶 ) } ) ) | 
						
							| 27 | 26 | eldifad | ⊢ ( 𝜑  →  ( 𝐽 ‘ 𝐸 )  ∈  𝐷 ) | 
						
							| 28 | 1 2 3 12 13 5 15 16 17 8 25 | mapdhvmap | ⊢ ( 𝜑  →  ( 𝑀 ‘ ( 𝑁 ‘ { 𝐸 } ) )  =  ( 𝐿 ‘ { ( 𝐽 ‘ 𝐸 ) } ) ) | 
						
							| 29 | 21 | necomd | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝐸 } )  ≠  ( 𝑁 ‘ { 𝑧 } ) ) | 
						
							| 30 | 1 2 3 12 13 5 14 15 16 18 8 27 28 29 25 19 | hdmap1cl | ⊢ ( 𝜑  →  ( 𝐼 ‘ 〈 𝐸 ,  ( 𝐽 ‘ 𝐸 ) ,  𝑧 〉 )  ∈  𝐷 ) | 
						
							| 31 |  | eqid | ⊢ ( LSubSp ‘ 𝑈 )  =  ( LSubSp ‘ 𝑈 ) | 
						
							| 32 | 1 2 8 | dvhlmod | ⊢ ( 𝜑  →  𝑈  ∈  LMod ) | 
						
							| 33 | 3 31 13 32 9 10 | lspprcl | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑋 ,  𝑌 } )  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 34 | 12 31 32 33 19 20 | lssneln0 | ⊢ ( 𝜑  →  𝑧  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 35 |  | eqidd | ⊢ ( 𝜑  →  ( 𝐼 ‘ 〈 𝐸 ,  ( 𝐽 ‘ 𝐸 ) ,  𝑧 〉 )  =  ( 𝐼 ‘ 〈 𝐸 ,  ( 𝐽 ‘ 𝐸 ) ,  𝑧 〉 ) ) | 
						
							| 36 |  | eqid | ⊢ ( -g ‘ 𝑈 )  =  ( -g ‘ 𝑈 ) | 
						
							| 37 |  | eqid | ⊢ ( -g ‘ 𝐶 )  =  ( -g ‘ 𝐶 ) | 
						
							| 38 | 1 2 3 36 12 13 5 14 37 15 16 18 8 25 27 34 30 29 28 | hdmap1eq | ⊢ ( 𝜑  →  ( ( 𝐼 ‘ 〈 𝐸 ,  ( 𝐽 ‘ 𝐸 ) ,  𝑧 〉 )  =  ( 𝐼 ‘ 〈 𝐸 ,  ( 𝐽 ‘ 𝐸 ) ,  𝑧 〉 )  ↔  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑧 } ) )  =  ( 𝐿 ‘ { ( 𝐼 ‘ 〈 𝐸 ,  ( 𝐽 ‘ 𝐸 ) ,  𝑧 〉 ) } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝐸 ( -g ‘ 𝑈 ) 𝑧 ) } ) )  =  ( 𝐿 ‘ { ( ( 𝐽 ‘ 𝐸 ) ( -g ‘ 𝐶 ) ( 𝐼 ‘ 〈 𝐸 ,  ( 𝐽 ‘ 𝐸 ) ,  𝑧 〉 ) ) } ) ) ) ) | 
						
							| 39 | 35 38 | mpbid | ⊢ ( 𝜑  →  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑧 } ) )  =  ( 𝐿 ‘ { ( 𝐼 ‘ 〈 𝐸 ,  ( 𝐽 ‘ 𝐸 ) ,  𝑧 〉 ) } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝐸 ( -g ‘ 𝑈 ) 𝑧 ) } ) )  =  ( 𝐿 ‘ { ( ( 𝐽 ‘ 𝐸 ) ( -g ‘ 𝐶 ) ( 𝐼 ‘ 〈 𝐸 ,  ( 𝐽 ‘ 𝐸 ) ,  𝑧 〉 ) ) } ) ) ) | 
						
							| 40 | 39 | simpld | ⊢ ( 𝜑  →  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑧 } ) )  =  ( 𝐿 ‘ { ( 𝐼 ‘ 〈 𝐸 ,  ( 𝐽 ‘ 𝐸 ) ,  𝑧 〉 ) } ) ) | 
						
							| 41 | 1 2 3 4 12 13 5 14 6 15 16 18 8 30 34 9 10 20 40 | hdmap1l6 | ⊢ ( 𝜑  →  ( 𝐼 ‘ 〈 𝑧 ,  ( 𝐼 ‘ 〈 𝐸 ,  ( 𝐽 ‘ 𝐸 ) ,  𝑧 〉 ) ,  ( 𝑋  +  𝑌 ) 〉 )  =  ( ( 𝐼 ‘ 〈 𝑧 ,  ( 𝐼 ‘ 〈 𝐸 ,  ( 𝐽 ‘ 𝐸 ) ,  𝑧 〉 ) ,  𝑋 〉 )  ✚  ( 𝐼 ‘ 〈 𝑧 ,  ( 𝐼 ‘ 〈 𝐸 ,  ( 𝐽 ‘ 𝐸 ) ,  𝑧 〉 ) ,  𝑌 〉 ) ) ) | 
						
							| 42 | 3 4 | lmodvacl | ⊢ ( ( 𝑈  ∈  LMod  ∧  𝑋  ∈  𝑉  ∧  𝑌  ∈  𝑉 )  →  ( 𝑋  +  𝑌 )  ∈  𝑉 ) | 
						
							| 43 | 32 9 10 42 | syl3anc | ⊢ ( 𝜑  →  ( 𝑋  +  𝑌 )  ∈  𝑉 ) | 
						
							| 44 | 1 2 8 | dvhlvec | ⊢ ( 𝜑  →  𝑈  ∈  LVec ) | 
						
							| 45 | 25 | eldifad | ⊢ ( 𝜑  →  𝐸  ∈  𝑉 ) | 
						
							| 46 | 3 4 13 32 9 10 | lspprvacl | ⊢ ( 𝜑  →  ( 𝑋  +  𝑌 )  ∈  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) ) | 
						
							| 47 | 31 13 32 33 46 | ellspsn5 | ⊢ ( 𝜑  →  ( 𝑁 ‘ { ( 𝑋  +  𝑌 ) } )  ⊆  ( 𝑁 ‘ { 𝑋 ,  𝑌 } ) ) | 
						
							| 48 | 47 20 | ssneldd | ⊢ ( 𝜑  →  ¬  𝑧  ∈  ( 𝑁 ‘ { ( 𝑋  +  𝑌 ) } ) ) | 
						
							| 49 | 3 13 32 19 43 48 | lspsnne2 | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑧 } )  ≠  ( 𝑁 ‘ { ( 𝑋  +  𝑌 ) } ) ) | 
						
							| 50 | 3 13 12 44 45 43 34 21 49 | hdmaplem4 | ⊢ ( 𝜑  →  ¬  𝑧  ∈  ( ( 𝑁 ‘ { 𝐸 } )  ∪  ( 𝑁 ‘ { ( 𝑋  +  𝑌 ) } ) ) ) | 
						
							| 51 | 1 11 2 3 13 5 14 17 18 7 8 43 19 50 | hdmapval2 | ⊢ ( 𝜑  →  ( 𝑆 ‘ ( 𝑋  +  𝑌 ) )  =  ( 𝐼 ‘ 〈 𝑧 ,  ( 𝐼 ‘ 〈 𝐸 ,  ( 𝐽 ‘ 𝐸 ) ,  𝑧 〉 ) ,  ( 𝑋  +  𝑌 ) 〉 ) ) | 
						
							| 52 | 3 13 44 19 9 10 20 | lspindpi | ⊢ ( 𝜑  →  ( ( 𝑁 ‘ { 𝑧 } )  ≠  ( 𝑁 ‘ { 𝑋 } )  ∧  ( 𝑁 ‘ { 𝑧 } )  ≠  ( 𝑁 ‘ { 𝑌 } ) ) ) | 
						
							| 53 | 52 | simpld | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑧 } )  ≠  ( 𝑁 ‘ { 𝑋 } ) ) | 
						
							| 54 | 3 13 12 44 45 9 34 21 53 | hdmaplem4 | ⊢ ( 𝜑  →  ¬  𝑧  ∈  ( ( 𝑁 ‘ { 𝐸 } )  ∪  ( 𝑁 ‘ { 𝑋 } ) ) ) | 
						
							| 55 | 1 11 2 3 13 5 14 17 18 7 8 9 19 54 | hdmapval2 | ⊢ ( 𝜑  →  ( 𝑆 ‘ 𝑋 )  =  ( 𝐼 ‘ 〈 𝑧 ,  ( 𝐼 ‘ 〈 𝐸 ,  ( 𝐽 ‘ 𝐸 ) ,  𝑧 〉 ) ,  𝑋 〉 ) ) | 
						
							| 56 | 52 | simprd | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑧 } )  ≠  ( 𝑁 ‘ { 𝑌 } ) ) | 
						
							| 57 | 3 13 12 44 45 10 34 21 56 | hdmaplem4 | ⊢ ( 𝜑  →  ¬  𝑧  ∈  ( ( 𝑁 ‘ { 𝐸 } )  ∪  ( 𝑁 ‘ { 𝑌 } ) ) ) | 
						
							| 58 | 1 11 2 3 13 5 14 17 18 7 8 10 19 57 | hdmapval2 | ⊢ ( 𝜑  →  ( 𝑆 ‘ 𝑌 )  =  ( 𝐼 ‘ 〈 𝑧 ,  ( 𝐼 ‘ 〈 𝐸 ,  ( 𝐽 ‘ 𝐸 ) ,  𝑧 〉 ) ,  𝑌 〉 ) ) | 
						
							| 59 | 55 58 | oveq12d | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ 𝑋 )  ✚  ( 𝑆 ‘ 𝑌 ) )  =  ( ( 𝐼 ‘ 〈 𝑧 ,  ( 𝐼 ‘ 〈 𝐸 ,  ( 𝐽 ‘ 𝐸 ) ,  𝑧 〉 ) ,  𝑋 〉 )  ✚  ( 𝐼 ‘ 〈 𝑧 ,  ( 𝐼 ‘ 〈 𝐸 ,  ( 𝐽 ‘ 𝐸 ) ,  𝑧 〉 ) ,  𝑌 〉 ) ) ) | 
						
							| 60 | 41 51 59 | 3eqtr4d | ⊢ ( 𝜑  →  ( 𝑆 ‘ ( 𝑋  +  𝑌 ) )  =  ( ( 𝑆 ‘ 𝑋 )  ✚  ( 𝑆 ‘ 𝑌 ) ) ) |