Step |
Hyp |
Ref |
Expression |
1 |
|
hdmap11.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
hdmap11.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
hdmap11.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
4 |
|
hdmap11.p |
⊢ + = ( +g ‘ 𝑈 ) |
5 |
|
hdmap11.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
|
hdmap11.a |
⊢ ✚ = ( +g ‘ 𝐶 ) |
7 |
|
hdmap11.s |
⊢ 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
hdmap11.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
9 |
|
hdmap11.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
10 |
|
hdmap11.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
11 |
|
hdmap11.e |
⊢ 𝐸 = 〈 ( I ↾ ( Base ‘ 𝐾 ) ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 |
12 |
|
hdmap11.o |
⊢ 0 = ( 0g ‘ 𝑈 ) |
13 |
|
hdmap11.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
14 |
|
hdmap11.d |
⊢ 𝐷 = ( Base ‘ 𝐶 ) |
15 |
|
hdmap11.l |
⊢ 𝐿 = ( LSpan ‘ 𝐶 ) |
16 |
|
hdmap11.m |
⊢ 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) |
17 |
|
hdmap11.j |
⊢ 𝐽 = ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) |
18 |
|
hdmap11.i |
⊢ 𝐼 = ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 ) |
19 |
|
hdmap11lem0.1a |
⊢ ( 𝜑 → 𝑧 ∈ 𝑉 ) |
20 |
|
hdmap11lem0.6 |
⊢ ( 𝜑 → ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |
21 |
|
hdmap11lem0.2a |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑧 } ) ≠ ( 𝑁 ‘ { 𝐸 } ) ) |
22 |
|
eqid |
⊢ ( 0g ‘ 𝐶 ) = ( 0g ‘ 𝐶 ) |
23 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
24 |
|
eqid |
⊢ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
25 |
1 23 24 2 3 12 11 8
|
dvheveccl |
⊢ ( 𝜑 → 𝐸 ∈ ( 𝑉 ∖ { 0 } ) ) |
26 |
1 2 3 12 5 14 22 17 8 25
|
hvmapcl2 |
⊢ ( 𝜑 → ( 𝐽 ‘ 𝐸 ) ∈ ( 𝐷 ∖ { ( 0g ‘ 𝐶 ) } ) ) |
27 |
26
|
eldifad |
⊢ ( 𝜑 → ( 𝐽 ‘ 𝐸 ) ∈ 𝐷 ) |
28 |
1 2 3 12 13 5 15 16 17 8 25
|
mapdhvmap |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝐸 } ) ) = ( 𝐿 ‘ { ( 𝐽 ‘ 𝐸 ) } ) ) |
29 |
21
|
necomd |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝐸 } ) ≠ ( 𝑁 ‘ { 𝑧 } ) ) |
30 |
1 2 3 12 13 5 14 15 16 18 8 27 28 29 25 19
|
hdmap1cl |
⊢ ( 𝜑 → ( 𝐼 ‘ 〈 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑧 〉 ) ∈ 𝐷 ) |
31 |
|
eqid |
⊢ ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 ) |
32 |
1 2 8
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
33 |
3 31 13 32 9 10
|
lspprcl |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
34 |
12 31 32 33 19 20
|
lssneln0 |
⊢ ( 𝜑 → 𝑧 ∈ ( 𝑉 ∖ { 0 } ) ) |
35 |
|
eqidd |
⊢ ( 𝜑 → ( 𝐼 ‘ 〈 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑧 〉 ) = ( 𝐼 ‘ 〈 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑧 〉 ) ) |
36 |
|
eqid |
⊢ ( -g ‘ 𝑈 ) = ( -g ‘ 𝑈 ) |
37 |
|
eqid |
⊢ ( -g ‘ 𝐶 ) = ( -g ‘ 𝐶 ) |
38 |
1 2 3 36 12 13 5 14 37 15 16 18 8 25 27 34 30 29 28
|
hdmap1eq |
⊢ ( 𝜑 → ( ( 𝐼 ‘ 〈 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑧 〉 ) = ( 𝐼 ‘ 〈 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑧 〉 ) ↔ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑧 } ) ) = ( 𝐿 ‘ { ( 𝐼 ‘ 〈 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑧 〉 ) } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝐸 ( -g ‘ 𝑈 ) 𝑧 ) } ) ) = ( 𝐿 ‘ { ( ( 𝐽 ‘ 𝐸 ) ( -g ‘ 𝐶 ) ( 𝐼 ‘ 〈 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑧 〉 ) ) } ) ) ) ) |
39 |
35 38
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑧 } ) ) = ( 𝐿 ‘ { ( 𝐼 ‘ 〈 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑧 〉 ) } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝐸 ( -g ‘ 𝑈 ) 𝑧 ) } ) ) = ( 𝐿 ‘ { ( ( 𝐽 ‘ 𝐸 ) ( -g ‘ 𝐶 ) ( 𝐼 ‘ 〈 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑧 〉 ) ) } ) ) ) |
40 |
39
|
simpld |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑧 } ) ) = ( 𝐿 ‘ { ( 𝐼 ‘ 〈 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑧 〉 ) } ) ) |
41 |
1 2 3 4 12 13 5 14 6 15 16 18 8 30 34 9 10 20 40
|
hdmap1l6 |
⊢ ( 𝜑 → ( 𝐼 ‘ 〈 𝑧 , ( 𝐼 ‘ 〈 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑧 〉 ) , ( 𝑋 + 𝑌 ) 〉 ) = ( ( 𝐼 ‘ 〈 𝑧 , ( 𝐼 ‘ 〈 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑧 〉 ) , 𝑋 〉 ) ✚ ( 𝐼 ‘ 〈 𝑧 , ( 𝐼 ‘ 〈 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑧 〉 ) , 𝑌 〉 ) ) ) |
42 |
3 4
|
lmodvacl |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑋 + 𝑌 ) ∈ 𝑉 ) |
43 |
32 9 10 42
|
syl3anc |
⊢ ( 𝜑 → ( 𝑋 + 𝑌 ) ∈ 𝑉 ) |
44 |
1 2 8
|
dvhlvec |
⊢ ( 𝜑 → 𝑈 ∈ LVec ) |
45 |
25
|
eldifad |
⊢ ( 𝜑 → 𝐸 ∈ 𝑉 ) |
46 |
3 4 13 32 9 10
|
lspprvacl |
⊢ ( 𝜑 → ( 𝑋 + 𝑌 ) ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |
47 |
31 13 32 33 46
|
lspsnel5a |
⊢ ( 𝜑 → ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ⊆ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |
48 |
47 20
|
ssneldd |
⊢ ( 𝜑 → ¬ 𝑧 ∈ ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ) |
49 |
3 13 32 19 43 48
|
lspsnne2 |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑧 } ) ≠ ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ) |
50 |
3 13 12 44 45 43 34 21 49
|
hdmaplem4 |
⊢ ( 𝜑 → ¬ 𝑧 ∈ ( ( 𝑁 ‘ { 𝐸 } ) ∪ ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ) ) |
51 |
1 11 2 3 13 5 14 17 18 7 8 43 19 50
|
hdmapval2 |
⊢ ( 𝜑 → ( 𝑆 ‘ ( 𝑋 + 𝑌 ) ) = ( 𝐼 ‘ 〈 𝑧 , ( 𝐼 ‘ 〈 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑧 〉 ) , ( 𝑋 + 𝑌 ) 〉 ) ) |
52 |
3 13 44 19 9 10 20
|
lspindpi |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑧 } ) ≠ ( 𝑁 ‘ { 𝑋 } ) ∧ ( 𝑁 ‘ { 𝑧 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) ) |
53 |
52
|
simpld |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑧 } ) ≠ ( 𝑁 ‘ { 𝑋 } ) ) |
54 |
3 13 12 44 45 9 34 21 53
|
hdmaplem4 |
⊢ ( 𝜑 → ¬ 𝑧 ∈ ( ( 𝑁 ‘ { 𝐸 } ) ∪ ( 𝑁 ‘ { 𝑋 } ) ) ) |
55 |
1 11 2 3 13 5 14 17 18 7 8 9 19 54
|
hdmapval2 |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝑋 ) = ( 𝐼 ‘ 〈 𝑧 , ( 𝐼 ‘ 〈 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑧 〉 ) , 𝑋 〉 ) ) |
56 |
52
|
simprd |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑧 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) |
57 |
3 13 12 44 45 10 34 21 56
|
hdmaplem4 |
⊢ ( 𝜑 → ¬ 𝑧 ∈ ( ( 𝑁 ‘ { 𝐸 } ) ∪ ( 𝑁 ‘ { 𝑌 } ) ) ) |
58 |
1 11 2 3 13 5 14 17 18 7 8 10 19 57
|
hdmapval2 |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝑌 ) = ( 𝐼 ‘ 〈 𝑧 , ( 𝐼 ‘ 〈 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑧 〉 ) , 𝑌 〉 ) ) |
59 |
55 58
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝑋 ) ✚ ( 𝑆 ‘ 𝑌 ) ) = ( ( 𝐼 ‘ 〈 𝑧 , ( 𝐼 ‘ 〈 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑧 〉 ) , 𝑋 〉 ) ✚ ( 𝐼 ‘ 〈 𝑧 , ( 𝐼 ‘ 〈 𝐸 , ( 𝐽 ‘ 𝐸 ) , 𝑧 〉 ) , 𝑌 〉 ) ) ) |
60 |
41 51 59
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝑆 ‘ ( 𝑋 + 𝑌 ) ) = ( ( 𝑆 ‘ 𝑋 ) ✚ ( 𝑆 ‘ 𝑌 ) ) ) |