Metamath Proof Explorer


Theorem hdmap11lem1

Description: Lemma for hdmapadd . (Contributed by NM, 26-May-2015)

Ref Expression
Hypotheses hdmap11.h H = LHyp K
hdmap11.u U = DVecH K W
hdmap11.v V = Base U
hdmap11.p + ˙ = + U
hdmap11.c C = LCDual K W
hdmap11.a ˙ = + C
hdmap11.s S = HDMap K W
hdmap11.k φ K HL W H
hdmap11.x φ X V
hdmap11.y φ Y V
hdmap11.e E = I Base K I LTrn K W
hdmap11.o 0 ˙ = 0 U
hdmap11.n N = LSpan U
hdmap11.d D = Base C
hdmap11.l L = LSpan C
hdmap11.m M = mapd K W
hdmap11.j J = HVMap K W
hdmap11.i I = HDMap1 K W
hdmap11lem0.1a φ z V
hdmap11lem0.6 φ ¬ z N X Y
hdmap11lem0.2a φ N z N E
Assertion hdmap11lem1 φ S X + ˙ Y = S X ˙ S Y

Proof

Step Hyp Ref Expression
1 hdmap11.h H = LHyp K
2 hdmap11.u U = DVecH K W
3 hdmap11.v V = Base U
4 hdmap11.p + ˙ = + U
5 hdmap11.c C = LCDual K W
6 hdmap11.a ˙ = + C
7 hdmap11.s S = HDMap K W
8 hdmap11.k φ K HL W H
9 hdmap11.x φ X V
10 hdmap11.y φ Y V
11 hdmap11.e E = I Base K I LTrn K W
12 hdmap11.o 0 ˙ = 0 U
13 hdmap11.n N = LSpan U
14 hdmap11.d D = Base C
15 hdmap11.l L = LSpan C
16 hdmap11.m M = mapd K W
17 hdmap11.j J = HVMap K W
18 hdmap11.i I = HDMap1 K W
19 hdmap11lem0.1a φ z V
20 hdmap11lem0.6 φ ¬ z N X Y
21 hdmap11lem0.2a φ N z N E
22 eqid 0 C = 0 C
23 eqid Base K = Base K
24 eqid LTrn K W = LTrn K W
25 1 23 24 2 3 12 11 8 dvheveccl φ E V 0 ˙
26 1 2 3 12 5 14 22 17 8 25 hvmapcl2 φ J E D 0 C
27 26 eldifad φ J E D
28 1 2 3 12 13 5 15 16 17 8 25 mapdhvmap φ M N E = L J E
29 21 necomd φ N E N z
30 1 2 3 12 13 5 14 15 16 18 8 27 28 29 25 19 hdmap1cl φ I E J E z D
31 eqid LSubSp U = LSubSp U
32 1 2 8 dvhlmod φ U LMod
33 3 31 13 32 9 10 lspprcl φ N X Y LSubSp U
34 12 31 32 33 19 20 lssneln0 φ z V 0 ˙
35 eqidd φ I E J E z = I E J E z
36 eqid - U = - U
37 eqid - C = - C
38 1 2 3 36 12 13 5 14 37 15 16 18 8 25 27 34 30 29 28 hdmap1eq φ I E J E z = I E J E z M N z = L I E J E z M N E - U z = L J E - C I E J E z
39 35 38 mpbid φ M N z = L I E J E z M N E - U z = L J E - C I E J E z
40 39 simpld φ M N z = L I E J E z
41 1 2 3 4 12 13 5 14 6 15 16 18 8 30 34 9 10 20 40 hdmap1l6 φ I z I E J E z X + ˙ Y = I z I E J E z X ˙ I z I E J E z Y
42 3 4 lmodvacl U LMod X V Y V X + ˙ Y V
43 32 9 10 42 syl3anc φ X + ˙ Y V
44 1 2 8 dvhlvec φ U LVec
45 25 eldifad φ E V
46 3 4 13 32 9 10 lspprvacl φ X + ˙ Y N X Y
47 31 13 32 33 46 lspsnel5a φ N X + ˙ Y N X Y
48 47 20 ssneldd φ ¬ z N X + ˙ Y
49 3 13 32 19 43 48 lspsnne2 φ N z N X + ˙ Y
50 3 13 12 44 45 43 34 21 49 hdmaplem4 φ ¬ z N E N X + ˙ Y
51 1 11 2 3 13 5 14 17 18 7 8 43 19 50 hdmapval2 φ S X + ˙ Y = I z I E J E z X + ˙ Y
52 3 13 44 19 9 10 20 lspindpi φ N z N X N z N Y
53 52 simpld φ N z N X
54 3 13 12 44 45 9 34 21 53 hdmaplem4 φ ¬ z N E N X
55 1 11 2 3 13 5 14 17 18 7 8 9 19 54 hdmapval2 φ S X = I z I E J E z X
56 52 simprd φ N z N Y
57 3 13 12 44 45 10 34 21 56 hdmaplem4 φ ¬ z N E N Y
58 1 11 2 3 13 5 14 17 18 7 8 10 19 57 hdmapval2 φ S Y = I z I E J E z Y
59 55 58 oveq12d φ S X ˙ S Y = I z I E J E z X ˙ I z I E J E z Y
60 41 51 59 3eqtr4d φ S X + ˙ Y = S X ˙ S Y