Metamath Proof Explorer


Theorem hdmapadd

Description: Part 11 in Baer p. 48 line 35, (a+b)S = aS+bS in their notation (S = sigma). (Contributed by NM, 22-May-2015)

Ref Expression
Hypotheses hdmap11.h H = LHyp K
hdmap11.u U = DVecH K W
hdmap11.v V = Base U
hdmap11.p + ˙ = + U
hdmap11.c C = LCDual K W
hdmap11.a ˙ = + C
hdmap11.s S = HDMap K W
hdmap11.k φ K HL W H
hdmap11.x φ X V
hdmap11.y φ Y V
Assertion hdmapadd φ S X + ˙ Y = S X ˙ S Y

Proof

Step Hyp Ref Expression
1 hdmap11.h H = LHyp K
2 hdmap11.u U = DVecH K W
3 hdmap11.v V = Base U
4 hdmap11.p + ˙ = + U
5 hdmap11.c C = LCDual K W
6 hdmap11.a ˙ = + C
7 hdmap11.s S = HDMap K W
8 hdmap11.k φ K HL W H
9 hdmap11.x φ X V
10 hdmap11.y φ Y V
11 eqid I Base K I LTrn K W = I Base K I LTrn K W
12 eqid 0 U = 0 U
13 eqid LSpan U = LSpan U
14 eqid Base C = Base C
15 eqid LSpan C = LSpan C
16 eqid mapd K W = mapd K W
17 eqid HVMap K W = HVMap K W
18 eqid HDMap1 K W = HDMap1 K W
19 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 hdmap11lem2 φ S X + ˙ Y = S X ˙ S Y